Pemodelan dan Peramalan Volatilitas Memori Panjang pada Return Saham ANTM Studi Komparatif Model GARCH dan FIGARCH

Authors

  • Elfa Rafulta Universitas Andalas, Padang, Indonesia
  • Ferra Yanuar Universitas Andalas, Padang, Indonesia
  • Dodi Devianto Universitas Andalas, Padang, Indonesia
  • Maiyastri Universitas Andalas, Padang, Indonesia

DOI:

https://doi.org/10.30983/lattice.v5i1.9525

Keywords:

Pemodelan volatilitas , Return saham, GARCH, FIGARCH, Long memory

Abstract

This study aims to model and forecast the volatility of ANTM stock returns using FIGARCH and GARCH models to capture both short- and long-memory dynamics. Daily return data spanning from January 1, 2014, to December 31, 2024, were analyzed after stationarity confirmation via ADF test. A mean model was estimated using MA (4), followed by conditional variance modeling with GARCH (1,1) and FIGARCH (1, d,1). Diagnostic tests confirmed the presence of heteroskedasticity and long memory, justifying FIGARCH usage. The FIGARCH (1, d,1) model indicated significant long-memory effects (d = 0.461007), while GARCH (1,1) effectively captured short-term volatility clustering. Forecast performance comparison showed that although both models yielded equal RMSE (0.029000), GARCH (1,1) performed better in terms of MAE (0.019531 vs. 0.019529) and MAPE (192.0809 vs. 192.3617). However, FIGARCH demonstrated superior ability in modeling persistent volatility patterns with smoother conditional variance distribution and better long-term uncertainty estimation. These findings suggest that while GARCH is preferable for short-term predictive accuracy, FIGARCH offers more robust insights into long-term volatility persistence, making it suitable for strategic financial risk management.

 

Penelitian ini bertujuan untuk memodelkan dan meramalkan volatilitas return saham ANTM menggunakan model GARCH dan FIGARCH guna menangkap dinamika volatilitas jangka pendek dan panjang. Data return harian dari 1 Januari 2014 hingga 31 Desember 2024 dianalisis setelah melalui uji stasioneritas ADF. Model rata-rata ditentukan menggunakan MA (4), dilanjutkan dengan pemodelan varian bersyarat menggunakan GARCH (1,1) dan FIGARCH (1, d,1). Uji diagnostik menunjukkan adanya heteroskedastisitas dan efek memori panjang, mendukung penggunaan model FIGARCH. Hasil estimasi menunjukkan bahwa model FIGARCH (1, d,1) memiliki nilai d = 0,461007, mengindikasikan adanya efek long memory yang signifikan, sedangkan GARCH (1,1) efektif dalam menangkap klaster volatilitas jangka pendek. Evaluasi kinerja peramalan menunjukkan kedua model memiliki nilai RMSE yang sama (0,029000), namun GARCH (1,1) lebih unggul dalam MAE (0,019531 vs. 0,019529) dan MAPE (192,0809 vs. 192,3617). Meskipun demikian, FIGARCH menunjukkan keunggulan dalam menangkap pola volatilitas jangka panjang yang stabil. Dengan demikian, GARCH cocok untuk akurasi prediksi jangka pendek, sementara FIGARCH lebih direkomendasikan untuk estimasi risiko jangka panjang dalam pengelolaan keuangan strategis.

References

P. Taylor et al., “Journal of the American Statistical Association the Distribution of Realized Exchange Rate Volatility the Distribution of Realized Exchange Rate Volatility,” J. Am. Stat. Assoc., vol. 96, no. January 2013, pp. 37–41, 2011.

A. Aljandali and M. Tatahi, Modelling Volatility in Finance and Economics: ARCH, GARCH and EGARCH Models. 2018. doi: 10.1007/978-3-319-92985-9_8.

G. G. A. Perez, “Volatility clustering at a sector level in the Chinese equity market,” Int. J. Financ. Res., vol. 9, no. 3, pp. 103–107, 2018, doi: 10.5430/ijfr. v9n3p103.

R. T. Baillie, T. Bollerslev, and H. O. Mikkelsen, “Fractionally integrated generalized autoregressive conditional heteroskedasticity,” J. Econom., vol. 74, no. 1, pp. 3–30, 1996, doi: 10.1016/S0304-4076(95)01749-6.

S. Akbar, T. Saba, S. A. Bahaj, M. Inshal, and A. R. Khan, “Forecasting Volatility in Generalized Autoregressive Conditional Heteroscedastic (GARCH) Model with Outliers,” J. Adv. Inf. Technol., vol. 14, no. 2, pp. 311–318, 2023, doi: 10.12720/jait.14.2.311-318.

G. S. Osho, “A Generalized Autoregressive Conditional Heteroscedasticity GARCH for Forecasting and Modeling Crude Oil Price Volatility,” vol. 26, no. 6, pp. 39–53, 2024.

R. F. Engle, S. M. Focardi, and F. J. Fabozzi, “ARCH / GARCH Models in Applied Financial Econometrics,” Encycl. Financ. Model., pp. 359–374, 2012, doi: 10.1002/9781118182635.efm0062.

R. F. Engle and T. Bollerslev, “Modelling the persistence of conditional variances,” Econometric Reviews, vol. 5, no. 1. pp. 1–50, 1986. doi: 10.1080/07474938608800095.

H. E. Roman and M. Porto, “Fractional derivatives of random walks: Time series with long-time memory,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 78, no. 3, pp. 1–10, 2008, doi: 10.1103/PhysRevE.78.031127.

D. Rakshit and R. K. Paul, “Long Memory in Volatility: Application of Fractionally Integrated GARCH Model,” Founded 1998, no. February, pp. 107–118, 2023.

S. Mabrouk, “Forecasting Financial Assets Volatility Using Integrated GARCH-Type Models: International Evidence,” J. Financ. Econ., vol. 4, no. 2, pp. 54–62, 2016, doi: 10.12691/jfe-4-2-3.

S. R. Bentes, “Measuring persistence in stock market volatility using the FIGARCH approach,” Phys. A Stat. Mech. its Appl., vol. 408, pp. 190–197, Aug. 2014, doi: 10.1016/j.physa.2014.04.032.

R. A. Biantoro and R. A. Rahadi, “Stock Valuation and Financial Performance of Nickel Mining Company in Indonesia (Case Study: PT Vale Indonesia Tbk),” Int. J. Curr. Sci. Res. Rev., vol. 06, no. 02, pp. 959–985, 2023, doi: 10.47191/ijcsrr/v6-i2-13.

N. Malla and A. Asianto, “The Determinant of Mining Sector Stock Price Index at Indonesia Stock Exchange,” Int. J. Acad. Res. Accounting, Financ. Manag. Sci., vol. 10, no. 3, pp. 28–37, 2020, doi: 10.6007/ijarafms/v10-i3/7678.

A. R. Putra and R. Robiyanto, “The effect of commodity price changes and USD/IDR exchange rate on Indonesian mining companies’ stock return,” J. Keuang. dan Perbank., vol. 23, no. 1, pp. 103–115, 2019, doi: 10.26905/jkdp. v23i1.2084.

W. Liu, “Leveraging probability and statistical algorithms for enhanced financial risk management,” Theor. Nat. Sci., vol. 38, no. 1, pp. 32–38, 2024, doi: 10.54254/2753-8818/38/20240553.

M. Zhou, “Predict stock price fluctuations using Realized Volatility, CEEMDAN, LSTM models,” SHS Web Conf., vol. 196, p. 02003, 2024, doi: 10.1051/shsconf/202419602003.

G. P. Kumar and F. Crises, “The Safe Heaven Appeal of Gold: A Comparative Analysis of Gold Price and Nifty50 Index during Financial Crises,” Int. J. Emerg. Knowl. Stud., vol. 03, no. 09, pp. 734–741, 2024.

H. Boubaker, J. Cunado, L. A. Gil-Alana, and R. Gupta, “Global crises and gold as a safe haven: Evidence from over seven and a half centuries of data,” Phys. A Stat. Mech. its Appl., vol. 540, 2020, doi: 10.1016/j.physa.2019.123093.

D. G. Baur and T. K. McDermott, “Is gold a safe haven? International evidence,” J. Bank. Financ., vol. 34, no. 8, pp. 1886–1898, 2010, doi: 10.1016/j.jbankfin.2009.12.008.

A. Afnanda, M. Maiyastri, and D. Devianto, “Model Volatilitas Return Index Saham Syariah Indonesia Melalui Pendekatan Bayesian Markov Switching GARCH,” Lattice J. J. Math. Educ. Appl., vol. 4, no. 1, pp. 14–26, 2024, doi: 10.30983/lattice.v4i1.8381.

S. B. Kwarteng and P. A. Andreevich, “Comparative Analysis of ARIMA, SARIMA and Prophet Model in Forecasting,” vol. 5, no. 4, pp. 110–120, 2024.

M. Iaousse, Y. Jouilil, M. Bouincha, and D. Mentagui, “A Comparative Simulation Study of Classical and Machine Learning Techniques for Forecasting Time Series Data,” Int. J. online Biomed. Eng., vol. 19, no. 8, pp. 56–65, 2023, doi: 10.3991/ijoe. v19i08.39853.

R. S. Tsay, Analysis of financial time series. Wiley, 2010.

R. S. Dhankar, “Stock Market Return Volatility,” in Capital Markets and Investment Decision Making, Springer India, 2019, pp. 123–133. doi: 10.1007/978-81-322-3748-8_7.

A. Opschoor, Understanding Financial Market Volatility. Roterrdrm, 2013.

S. R. Bentes, “Forecasting volatility in gold returns under the GARCH, IGARCH and FIGARCH frameworks: New evidence,” Phys. A Stat. Mech. its Appl., vol. 438, pp. 355–364, 2015, doi: 10.1016/j.physa.2015.07.011.

Z. Zhang and J. C. Moore, “Autoregressive Moving Average Models,” Math. Phys. Fundam. Clim. Chang., pp. 239–290, 2015, doi: 10.1016/b978-0-12-800066-3.00008-5.

Sukono, E. Lesmana, D. Susanti, H. Napitupulu, and Y. Hidayat, “Estimating the Value-at-Risk for some stocks at the capital market in Indonesia based on ARMA-FIGARCH models,” in Journal of Physics: Conference Series, Nov. 2017, vol. 909, no. 1. doi: 10.1088/1742-6596/909/1/012040.

C. S. Chen, Y. H. Lee, and H. W. Hsu, “Adaptive order selection for autoregressive models,” J. Stat. Comput. Simul., vol. 84, no. 9, pp. 1963–1974, 2014, doi: 10.1080/00949655.2013.776559.

C. Agiakloglou and A. Tsimpanos, “Evaluating information criteria for selecting spatial processes,” Ann. Reg. Sci., vol. 66, no. 3, pp. 677–697, 2021, doi: 10.1007/s00168-020-01033-y.

F. C. Palm, “7 GARCH models of volatility,” Handb. Stat., vol. 14, pp. 209–240, 1996, doi: 10.1016/S0169-7161(96)14009-8.

D. Fakhriyana, A. Hoyyi, and T. Widiharih, “PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DAN MODEL FUNGSI TRANSFER (Studi Kasus Indeks Harga Saham Gabngan dan Harga Minyak Mentah Dunia Tahun 2013 sampai 2015),” J. Gaussian, vol. 5, no. 4, pp. 633–640, 2016.

K. Daly, “Financial volatility: Issues and measuring techniques,” Phys. A Stat. Mech. its Appl., vol. 387, no. 11, pp. 2377–2393, 2008, doi: 10.1016/j.physa.2008.01.009.

J. Arnerić, T. Poklepović, and Z. Aljinović, “GARCH based artificial neural networks in forecasting conditional variance of stock returns,” Croat. Oper. Res. Rev., vol. 5, no. 2, pp. 329–343, 2014, doi: 10.17535/crorr.2014.0017.

L. Zhang, “Testing for long memory volatility of Chinese stock markets with FIGARCH model,” Int. Conf. Manag. Sci. Eng. - Annu. Conf. Proc., pp. 1450–1455, 2014, doi: 10.1109/ICMSE.2014.6930402.

G. S. Hiremath, “Indian Stock Market,” SpringerBriefs Econ., 2014, doi: 10.1007/978-81-322-1590-5.

O. Saltik, S. Degirmen, and M. Ural, “Volatility Modelling in Crude Oil and Natural Gas Prices,” Procedia Econ. Financ., vol. 38, pp. 476–491, 2016, doi: 10.1016/s2212-5671(16)30219-2.

S. J. Cochran, I. Mansur, and B. Odusami, “Volatility persistence in metal returns: A FIGARCH approach,” J. Econ. Bus., vol. 64, no. 4, pp. 287–305, 2012, doi: 10.1016/j.jeconbus.2012.03.001.

E. S. Ramadhani, D. Devianto, and F. Yanuar, “MODEL PERGERAKAN HARGA MINYAK MENTAH BRENT MENGGUNAKAN PENDEKATAN TIME SERIES DENGAN EFEK LONG MEMORY,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 5, no. 3, pp. 1673–1686, Dec. 2024, doi: 10.46306/ lb. v5i3.746.

N. Rismawati, “Long Memory Volatility Model dengan ARFIMA-HYGARCH untuk Meramalkan Return Indeks Harga Saham Gabungan (IHSG),” 2022.

D. Rakshit and R. K. Paul, “Modeling Time Series with Asymmetric Volatility and Long Memory,” Indian J. Agric. Econ., vol. 79, no. 2, pp. 231–244, Apr. 2024, doi: 10.63040/25827510.2024.02.004.

Downloads

Published

2025-06-29

Issue

Section

Articles

Citation Check