Pelabelan Vertex-Graceful pada Graf-(5,7)

Authors

  • Gema Hista Medika Universitas Islam Negeri Sjech M Djamil Djambek Bukittinggi, Bukittinggi
  • Zebbil Billian Tomi Universitas Islam Negeri Sjech M Djamil Djambek Bukittinggi, Bukittinggi
  • Mhd Furqan Akbar Institut Teknologi Sepuluh Nopember, Surabaya
  • Fifian Fitra Janeva Universitas Trisakti, Jakarta
  • Nuryanuwar Universitas Fort De Kock Bukittinggi, Bukittinggi

DOI:

https://doi.org/10.30983/lattice.v4i1.8670

Keywords:

Pelabelan, Pelabelan Vertex Graceful, Graf(5.7)

Abstract

Several previous studies on graceful vertex labeling have been conducted. This study aims to identify graceful vertex labeling on a (5,7)-graph, which consists of 5 vertices and 7 edges. The focus of this study is on a simple and finitely connected (5,7)-graph. This type of research is descriptive qualitative, using literature study techniques and non-statistical data analysis. The results show that of the 4 non-isomorphic (5,7)-graphs, all of the graphs meet the criteria for graceful vertex labeling, namely R1, R2, R3, and R4.

 

Beberapa studi sebelumnya mengenai pelabelan vertex-graceful telah dilakukan. Penelitian ini bertujuan untuk mengidentifikasi pelabelan vertex-graceful pada graf-(5,7), yang terdiri dari 5 titik dan 7 sisi. Fokus penelitian ini adalah pada graf-(5,7) yang sederhana dan terhubung berhingga. Tipe penelitian ini adalah deskriptif kualitatif, menggunakan teknik studi pustaka dan analisis data non statistik. Hasil penelitian menunjukkan bahwa dari 4 graf-(5,7) yang tidak isomorfik, semua grafnya memenuhi kriteria pelabelan vertex-graceful, yaitu R1, R2, R3, dan R4.

References

M. Miller, “Open Problems in Graph Theory : Labeling and Extremal Graph,” 2000.

B. Anjani, Primas Tri Anjar, Heri, Robertus, & Surarso, “Pelabelan Super Graceful Untuk Beberapa Graf Khusus,” pp. 183–203, 2012, [Online]. Available: https://ejournal3.undip.ac.id/index.php/matematika/article/view/1238

B. R. Dian Noer Indah Sari, “Komplit Reguler K-Partit, Graf Roda, Graf Bisikel, Dan Graf Trisikel,” pp. 1–7, 2013, [Online]. Available: https://ejournal.unesa.ac.id/index.php/mathunesa/article/view/2637

J. A. Bantara, I. W. Sudarsana, and S. Musdalifah, “Pelabelan Graceful Ganjil Pada Graf Duplikasi Dan Split Bintang,” J. Ilm. Mat. Dan Terap., vol. 15, no. 1, pp. 28–35, 2018, doi: 10.22487/2540766x.2018.v15.i1.10193.

Maryana and K. A. Sugeng, “Graceful Labeling on Thorny-Snake Graphs,” THETA J. Pendidik. Mat., vol. 3, no. 2, pp. 55–58, 2022, doi: https://doi.org/10.35747/t.v3i2.137.

J. Daniel, Z. Zidane Barack, P. Setya Ilham, and K. Ariyanti Sugeng, “Pelabelan Odd-Graceful Pada Graf Produk Sisir (Odd Graceful Labelling on Comb Product Graph),” Maj. Ilm. Mat. dan Stat., vol. 22, no. 1, pp. 30–42, 2022, [Online]. Available: https://jurnal.unej.ac.id/index.php/MIMS/index

H. Sumardi, A. Susanta, and T. Alfra Siagian, “Kemampuan Mahasiswa dalam Membuktikan Teorema pada Pelabelan Graceful Graph A-Bintang,” JPMR J. Pendidik. Mat. Raflesia, vol. 07, no. 01, pp. 35–43, 2022, [Online]. Available: https://ejournal.unib.ac.id/index.php/jpmr

L. Affifah and I. K. Budayasa, “Pelabelan Anggun Graf Berlian Rangkap Berbintang, Beberapa Kelas Graf Pohon, Dan Graf Corona Khusus,” MATHunesa J. Ilm. Mat., vol. 11, no. 3, pp. 368–382, 2023.

G. H. Medika, “Pelabelan Vertex-Graceful Pada Beberapa Graf,” in Prosiding Seminar Nasional STKIP PGRI Sumatera Barat, 2019, pp. 54–65. [Online]. Available: http://econference.stkip-pgri-sumbar.ac.id/index.php/matematika/IPME/paper/view/761

G. H. Medika and Z. B. Tomi, “Pelabelan vertex-graceful pada graf-(6,8),” vol. 6, no. 1, pp. 63–70, 2022, [Online]. Available: https://ejournal.uinib.ac.id/jurnal/index.php/matheduca/article/view/3479

N.Hartsfield and G.Ringel, Pearls in Graph Theory. San Diego: Academic Press, 1990.

T. Wahyuningrum and E. Usada, Matematika Diskrit : Dan Penerapannya Dalam Dunia Informasi. Sleman: deepublish, 2019.

R. Munir, Matematika Diskrit Edisi ke 7. Bandung: Informatika, 2020.

B. R. G and D. R. Sherbert, Introduction to Real Analisys Third Edition. New York: John Wiley & Sons, 2000.

S.-M. Lee, Y.C.Pan, and M.-C. Tsai, “On vertex-graceful (p,p+1)-graphs,” 2005, p. 172.

N. Martono, Metode penelitian kuantitatif : analisis isi dan analisis data sekunder. Jakarta: Rajawali Pers, 2014.

Sugiyono, Metode penelitian kualitatif : (untuk penelitian yang bersifat : eksploratif, enterpretif, interaktif dan konstruktif). Bandung: Alfabeta, 2020.

Downloads

Submitted

2024-10-16

Accepted

2024-11-16

Published

2024-06-30

Issue

Section

Articles