Pengembangan Hypothectial Learning Trajectory Topik Pola Bilangan Berbasis Realistic Mathematic Education
DOI:
https://doi.org/10.30983/lattice.v1i1.4634Keywords:
Hypothetical Learning Trajectory, RMEAbstract
This study aims to produce a Hypothetical Learning Trajectory (HLT) in helping students understand the concept of number patterns. The research method used is design research. The research is focused on designing HLT which is validated, revised and tested one-to-one for students. Research data were collected through observation, interviews, and analysis of student answers. The instruments used are HLT and student worksheets using the Realistic Mathematics Education (RME) approach through literature study. The collected data were collected and analyzed qualitatively. This research was conducted at the Non-Formal Education Program Package A level 2, involving 3 students with high, medium and low ability levels. The results of the analysis show that students with medium and high abilities can understand the material quite well, while students with low abilities have difficulty understanding the problems given.
Â
Penelitian ini bertujuan untuk menghasilkan Hypothetical Learning Trajectory (HLT) dalam membantu peserta didik dalam memahami konsep pola bilangan. Metode penelitian yang digunakan adalah penelitian desain. Penelitian difokuskan untuk merancang HLT yang divalidasi, direvisi dan diujicobakan secara one-to-one kepada peserta didik. Data penelitian dikumpulkan melalui observasi, wawancara, dan analisis jawaban peserta didik. Instrument yang digunakan berupa HLT dan lembar kerja peserta didik dengan menggunakan pendekatan Realistic Mathematics Education  (RME) melalui studi literature. Data yang dikumpulkan dikumpulkan dianalisis secara kualitatif. Penelitian ini dilakukan pada Pendidikan Non Formal Program Paket A tingkat 2, dengan melibatkan 3 orang peserta didik dengan tingkat kemampuan tinggi, sedang dan rendah. Hasil analisis menunjukkan bahwa peserta didik dengan kemampuan sedang dan tinggi dapat memahami materi cukup baik, sedangkan peserta didik kemampuan rendah mengalami kesulitan dalam memahami masalah yang diberikan.
References
Akker, J. van den, Bannan, B., Kelly, A. E., Nieveen, N., & Plomp, T. (2018). Educational Education and development. Netherlands Institute for Curriculum Development (SLO), 5. Bakker, Utrecht . 2004. De-sign research in statistics education: On symbolizing and computer tools / A.CD-β Press, Center for Sci-ence and Mathematics Education – (CD-β wetenschappelijke bibliotheek; nr. 50; 2004). Dissertation Utrecht University. – With references. – With a summary. – Met een samenvatting in het Nederlands.
Gravemeijer, Koeno and Cobb, Paul. (2013). Design research from the Learning Design Perspective. Da-lam Jan Ven Den Akker, et. al. Educational Design Research. London: Routledge.
Graveimejer K, J Bowers, M. Stephen, Chapter 4. Hypotethical Learning Trajectory on Measurement and Flexible Aritmetic . p. 52-66 (2014).
Mohammad Tohir. (2019). Hasil PISA Indonesia Tahun 2018 Turun Dibanding Tahun 2015. https://matematohir.wordpress.com/
Nukuhaly, N. A., Assagaf, G., & Muhamad, J. (2018). Analisis Kesalahan Dalam Menyelesaikan Soal- Soal Pola Bilangan Pada Siswa Kelas VIII, 103–111.
Rangkuti, Ahmad Nizar. (2015). Pengembangan Alur Pembelajaran Topik Pecahan di Sekolah Dasar dengan Pendekatan Pendidikan Matematika Realistik. Padang: Program Pascasarjana UNP.
Yulia, A. Fauzan, N. Gistituati, and Yerizon, “Intructional Design or Teaching Sets Using RME Approach at Junior High School,†International Conference on Science and Technology 2018, Applied Science and Technology, (2018) p. 261-267
Yusri, Y., & Arifin, S. (2018). Desain Pembelajaran Kooperatif Berbasis Teori Bruner Untuk Mening-katkan Kualitas Pembelajaran Matematika. HISTOGRAM: Jurnal Pendidikan Matematika, 2(2), 147. https://doi.org/10.31100/histogram.v2i2.233
Wijaya, Ariyadi. 2012. Pendidikan Matematika Realistik, Suatu Alternatif Pendekatan Pembelajaran Matematika . Yogyakarta: Graha Ilmu.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Authors who publish with Lattice Journal : Journal of Mathematics Education and Applied agree to the following terms: Authors retain copyright and grant the Lattice Journal : Journal of Mathematics Education and Applied right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in Lattice Journal : Journal of Mathematics Education and Applied. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Lattice Journal : Journal of Mathematics Education and Applied. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).