Optimization Of Agricultural Production In South Sumatera Using Multiple Linear Regression Algorithm
DOI:
https://doi.org/10.30983/knowbase.v4i2.8754Keywords:
Agricultural, CRISP-DM, Machine Learning, Multiple Linear Regression, OptimizationAbstract
Rice is one of the agricultural commodities in South Sumatra whose productivity level still fluctuates. In 2000, rice production reached 1,863,643.00 kg, then increased to 3,272,451.00 kg, in 2010, but decreased again in 2020 to 2,696,877.46 kg. This instability is influenced by various factors such as land area, rainfall, pest attacks, and fertilizer use. This study aims to optimize rice production by applying machine learning using multiple linear regression algorithms, and the CRISP-DM method, with the stages being business understanding, data understanding, data preparation, modeling, evaluation, and implementation. Data of 1,000 records obtained from farmers were analyzed using Google Collaboratory, resulting in an intercept of -3836,2639, and coefficients for land area of 5,7336, rainfall of 1,2710, pests of 6,1153, urea of 1,6226, and phonska of 1,2581. To evaluate the accuracy of rice production predictions based on these independent variables, calculations were made on the RMSE value and analysis of the coefficient of determination. The results were that the RMSE value was recorded at 17065084,9641, and the coefficient of determination (R²) was 0,6487, indicating that around 64,87 % of the variability in rice production can be explained by independent variables such as land area, rainfall, pest attacks, use of urea fertilizer, and phonska, while the remaining 35,13 % was influenced by other factors.
References
Pengelompokkan Provinsi Indonesia Menurut Indikator Kesejahteraan Rakyat,” Fakt. Exacta, vol. 12, no. 3, pp. 201–209, 2019.
A. Mutolib et al., “Biochar from agricultural waste for soil amendment candidate under different pyrolysis temperatures,” Indones. J. Sci. Technol., vol. 8, no. 2, pp. 243–258, 2023.
S. ARISTI, “Analisis Komoditi Unggulan dan Pertumbuhan Subsektor Tanaman Pangan di Provinsi Sumatera Selatan,” J. Agribisnis dan Sos. Ekon. Pertan., vol. 8, no. 1, pp. 44–49, 2022.
A. M. A. K. Parewe, M. Mursalim, T. S. Putri, and H. Hermawati, “Application of Case Based Reasoning Using The K-Nearest Neighbor Algorithm in an Expert System for Diagnosing Pests and Diseases of Sugarcane Plants,” Knowbase Int. J. Knowl. Database, vol. 2, no. 2, pp. 181–189, 2022.
R. RANDIKA, M. SIDIK, and Y. PEROZA, “Analisis faktor-faktor yang mempengaruhi produksi padi sawah di desa sepang kecamatan pampangan kabupaten oki,” Soc. J. Ilmu-Ilmu Agribisnis, vol. 10, no. 2, pp. 66–71, 2022.
S. MULYATI, K. SALEH, and A. MULYANINGSIH, “Kapasitas Petani Padi Sawah Dalam Mendukung Ketahanan Pangan Keluarga Berkelanjutan di Kabupaten Pandeglang,” J. Agribisnis Terpadu, vol. 13, no. 2, pp. 266–284, 2020.
Y. A. AL-KHASSAWNEH, “A review of artificial intelligence in security and privacy: Research advances, applications, opportunities, and challenges,” Indones. J. Sci. Technol., vol. 8, no. 1, pp. 79–96, 2023.
R. R. RACHMAWATI, “Smart Farming 4.0 Untuk Mewujudkan Pertanian Indonesia Maju, Mandiri, Dan Modern,” in Forum Penelitian Agro Ekonomi, 2020, pp. 137–154.
K. Lee and H.-Y. Park, “Development of Convergence Course of Artificial Intelligence and Psychology Applying Team Teaching Method,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 5 SE-Articles, pp. 1772–1778, Oct. 2024, doi: 10.18517/ijaseit.14.5.11491.
A. N. Solihat, D. Dahlan, K. Kusnendi, B. Susetyo, and A. S. M. Al Obaidi, “Artificial intelligence (AI)-based learning media: Definition, bibliometric, classification, and issues for enhancing creative thinking in education,” ASEAN J. Sci. Eng., vol. 4, no. 3, pp. 349–382, 2024.
A. PINANDITO, S. A. WICAKSONO, and S. H. WIJOYO, “Implementasi Machine Learning dalam Deteksi Risiko Tinggi Diabetes Melitus pada Kehamilan,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 4, pp. 739–746, 2024.
E. P. Saputra, S. Nurajizah, M. Maulidah, N. Hidayati, and T. Rahman, “Komparasi Machine Learning Berbasis Pso Untuk Prediksi Tingkat Keberhasilan Belajar Berbasis E-Learning,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, pp. 321–328, 2023.
L. WIKARSA, S. PANDELAKI, and K. SUMAJOUW, “Prediction of the Community Welfare in North Wangurer Village Using Multiple Linear Regression,” J. Pekommas, vol. 8, no. 2, pp. 107–118, 2023.
Y. Lizar, A. S. Firrizqi, A. Guci, and J. Sunadi, “Data Mining Analysis to Predict Student Skills Using Naïve Bayes Method,” Knowbase Int. J. Knowl. Database, vol. 3, no. 2, pp. 150–159, 2023.
R. J. Suhatril, R. D. Syah, M. Hermita, B. Gunawan, and W. Silfianti, “Evaluation of Machine Learning Models for Predicting Cardiovascular Disease Based on Framingham Heart Study Data,” Ilk. J. Ilm., vol. 16, no. 1, pp. 68–75, 2024.
M. A. SHAFI, “K-means clustering analysis and multiple linear regression model on household income in Malaysia,” Int. J. Artif. Intell, vol. 12, no. 2, pp. 731–738, 2023.
A. Byna, M. M. Lakulu, I. Y. Panessai, and Nurhaeni, “Machine Learning-Based Stroke Prediction: A Critical Analysis,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 5 SE-Articles, pp. 1609–1618, Oct. 2024, doi: 10.18517/ijaseit.14.5.19527.
D. I. P. DESY, T. W. QUR’ANA, and A. DHARMAWATI, “Pemodelan Spasial untuk Analisa Produksi Padi Integrasi Machine Learning,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 14, no. 2, pp. 128–137, 2023.
I. U. RAHMAWATI, M. HADDIN, and S. SUHARTONO, “Potensi Sampah Untuk Pembangkit Listrik Tenaga Sampah (PLTSa) Berbasis Metode Regresi Linier Berganda,” J. Tek. Inform. UNIKA St. Thomas, pp. 1–8, 2023.
M. ADHA, E. UTAMI, and H. HANAFI, “Prediksi Produksi Jagung Menggunakan Algoritma Apriori Dan Regresi Linear Berganda (Studi Kasus: Dinas Pertanian Kabupaten Dompu),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 3, pp. 803–820, 2022.
A. F. BOY, “Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara),” J. Sci. Soc. Res., vol. 3, no. 2, pp. 78–85, 2020.
F. A. Vadhil, M. L. Salihi, and M. F. Nanne, “Machine learning-based intrusion detection system for detecting web attacks,” IAES Int. J. Artif. Intell., vol. 13, no. 1, pp. 711–721, 2024.
N. Aini, S. A. Wicaksono, and I. Arwani, “Pembangunan Sistem Informasi Perpustakaan Berbasis Web menggunakan Metode Rapid Application Development (RAD)(Studi pada: SMK Negeri 11 Malang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2019.
A. BAHTIAR, “Prediksi Hasil Panen Padi Tahun 2023 menggunakan Metode Regresi Linier di Kabupaten Indramayu,” J. Inform. Terpadu, vol. 9, no. 1, pp. 18–23, 2023.
D. Wulandari and R. Rumini, “Pemodelan dan Prediksi Produksi Padi Menggunakan Regresi Linear,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 12, no. 4, pp. 1011–1019, 2023.
H. PUTRA and N. U. WALMI, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” J. Nas. Teknol. dan Sist. Inf, vol. 6, no. 2, pp. 100–107, 2020.
C. SUSANTO, T. TAUFIQ, E. HASMIN, and K. ARYASA, “Sistem Pakar Prediksi Penyakit Diabetes Menggunakan Metode K-NN Berbasis Android,” CogITo Smart J., vol. 8, no. 2, pp. 359–370, 2022.
Y. I. Sulistya et al., “Prediction and Analysis of Rice Production and Yields Using Ensemble Learning Techniques,” Ilk. J. Ilm., vol. 16, no. 2, pp. 115–124, 2024.
D. Setiadi and R. Syahri, “Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Pengguna Narkoba di Kota Pagar Alam,” JUTIM (Jurnal Tek. Inform. Musirawas), vol. 7, no. 1, pp. 1–10, 2022.
B. Triandi, S. Efendi, and H. Mawengkang, “Regression-based Analytical Approach for Speech Emotion Prediction based on Multivariate Additive Regression Spline (MARS).,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 6, 2023.
B. A. K. A. NUGROHO and E. Nurfarida, “Prediksi Waktu Kedatangan Pelanggan Servis Kendaraan Bermotor Berdasarkan Data Historis menggunakan Support Vector Machine,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 7, no. 1, pp. 25–30, 2021.
N. NAZERIANDY, Y. SYAHRA, and M. SYAIFUDIN, “Penerapan Data Mining Untuk Memprediksi Penggunaan Daya Listrik Pada PT. PLN (Persero) Rayon Medan Selatan Dengan Menggunakan Metode Regresi Linier Berganda,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 20, no. 1, pp. 20–27, 2021.
D. Setiadi, Y. I. Mukti, and Y. Widiastiwi, “Decision Support System to Optimize E-tourism in Pagar Alam City,” in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), IEEE, 2023, pp. 149–154.
D. Setiadi and Y. I. Mukti, “Electronic Tourism Using Decision Support Systems to Optimize the Trips,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 23, no. 1, pp. 183–200, 2023.
N. AMALIA and O. P. RACHMAN, “Pengembangan Sistem Informasi Pertanian Berbasis Kecerdasan Buatan (E-Tandur) Dalam Menunjang Pertumbuhan Pertanian Masyarakat Daerah Kabupaten Bandung Dengan Metode Geographic Information System (Gis) Dan Internet Of Things (IOT),” J. Inform. dan Rekayasa Elektron., vol. 5, no. 1, pp. 121–130, 2022.
J. A. SOLANO, D. J. L. CUESTA, S. F. U. IBÁÑEZ, and J. R. CORONADO-HERNÁNDEZ, “Predictive models assessment based on CRISP-DM methodology for students performance in Colombia-Saber 11 Test,” Procedia Comput. Sci., vol. 198, pp. 512–517, 2022.
A. M. M. FATTAH, A. VOUTAMA, N. HERYANA, and N. SULISTIYOWATI, “Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, pp. 1669–1678, 2022.
C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on applying CRISP-DM process model,” Procedia Comput. Sci., vol. 181, pp. 526–534, 2021.
D. Setiadi, S. Sasmita, and M. Yolanda, “Penerapan Algoritma Regresi Linier Berganda Untuk Memprediksi Hasil panen Padi Di Kota Pagar Alam,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 5, no. 2, pp. 337–438, 2024.
D. F. Salsabillah, D. E. Ratnawati, and N. Y. Setiawan, “Analisis Sentimen Ulasan Rumah Makan Menggunakan Perbandingan Algoritma Support Vector Machine dengan Naive bayes (Studi Kasus: Ayam Goreng Nelongso Cabang Singosari, Malang),” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 1, pp. 107–116, 2024.
B. HUDA et al., “Analisis Sentimen E-Learning X Terhadap Antarmuka Pengguna Menggunakan Kombinasi Multinomial Naive Bayes Dan Pendekatan Design Thinking,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 4, pp. 895–902, 2024.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 Dedi Setiadi, Sasmita, Yogi Isro Mukti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).