Lattice Journal : Journal of Mathematics Education and Applied
Vol. 5 No. 1, Januari-Juni 2025 pp. 01-13

e-ISSN: 2798-4621 p-ISSN: 2798-6470
4. DOLI: http://dx.doi.org/10.30983/lattice.v5i1.9403

Pemodelan Return Harga Emas Dengan Pendekatan Inferensi

Informasi Artikel

Bayesian ARFIMA

Vivin Acnesyal, Dodi Devianto?, Maiyastri3

123 Universitas Andalas, Padang, Indonesia
*Corresponding Author

ABSTRACT

Diterima Redaksi: 8 Mei 2025
Revisi Akhir: 11 Juni 2025
Diterbitkan Online: 28 Juni 2025

Volatility in stock and commodity prices, such as gold, plays a crucial role in investment decisions because
high price fluctuations increase risk but also create opportunities for higher returns. The Autoregressive
Fractionally Integrated Moving Average (ARFIMA) model, an extension of the ARIMA model, is capable

of modeling data with long-term dependencies (long memory). This study applies the Bayesian ARFIMA

Kata Kunci inference model to address parameter uncertainty by incorporating prior information. The study focuses
Volatilitas on modeling monthly gold price returns from January 2014 to December 2024, totaling 132 observations.
ARFIMA According to Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values, the
Bayesian Bayesian ARFIMA model achieves slightly better performance with an AIC of -475.2392 and BIC of -
Fmas 4696136, compared to the ARFIMA model’s AIC of -474.7184 and BIC of -468.968. Gold returns exhibit

. a long memory characteristic, meaning current price fluctuations can have persistent effects over time.
Korespondensi Therefore, investing in gold is highly profitable as it preserves asset value and provides stability against
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Volatilitas harga saham dan komoditas, seperti emas merupakan salah satu faktor penting
dalam proses pengambilan keputusan investasi, karena fluktuasi harga yang tinggi dapat
meningkatkan risiko sekaligus menciptakan peluang untuk memperoleh keuntungan
yang lebih besar. Dalam analisis deret waktu (time series), model Autoregressive Fractionally
Integrated Moving Average (ARFIMA) merupakan pengembangan dari model Autoregressive
Integrated Moving Average (ARIMA) yang mampu memodelkan data dengan ketergantungan
jangka panjang (long memory). Penelitian ini menggunakan model inferensi Bayesian
ARFIMA untuk mengatasi ketidakpastian pada parameter dengan memanfaatkan
informasi prior yang diperoleh. Fokus penelitian adalah pemodelan return harga emas
bulanan periode Januari 2014 hingga Desember 2024 dengan total 132 data. Berdasarkan
perhitungan Akaike Information Criterion (AIC) dan Bayesian Information Criterion (BIC),
model Bayesian ARFIMA memperoleh nilai AIC sebesar -475.2392 dan BIC sebesar -
469.6136, sedikit lebih baik dibandingkan model ARFIMA yang memiliki AIC -474.7184
dan BIC -468.968. Harga return emas mengandung sifat long memory yang artinya bahwa
fluktuasi harga yang terjadi saat ini dapat memiliki pengaruh yang bertahan dalam jangka
panjang, sehingga investasi dalam bentuk emas menjadi sangat menguntungkan karena
mampu menjaga nilai aset dari waktu ke waktu dan memberikan stabilitas terhadap

gejolak ekonomi.

©2025 by the authors. Submitted for possible open access publication under the terms and conditions of the
Creative Commons Attribution-ShareAlike 4.0 International License-(CC-BY-SA)
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1. Pendahuluan

Emas adalah salah satu logam mulia yang digunakan sebagai perhiasan maupun properti
berharga, karena sifatnya yang relatif tahan lama. Selain itu, emas merupakan investasi yang
populer dan terpercaya, mengingat nilainya yang cenderung lebih stabil dan lebih tinggi. Harga
emas sering mengalami fluktuasi dan pergerakan harga di masa depan dapat diprediksi dengan
menganalisis pola pergerakan harga tersebut. Oleh karena itu, untuk memprediksi pergerakan
harga emas di masa yang akan datang, metode pemodelan deret waktu (time series) menjadi hal
yang sangat berguna bagi investor dan masyarakat dalam perencanaan serta pengambilan
keputusan investasi yang lebih tepat [1].

Selain fluktuasi harga, return menjadi indikator penting dalam analisis pergerakan harga.
Return menggambarkan perubahan harga suatu aset, investasi, atau proyek dalam periode
waktu tertentu. Perhitungan return berlandaskan pada prinsip bahwa tingkat keuntungan
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(return) selalu berbanding lurus dengan tingkat risiko yang dihadapi. Artinya, semakin tinggi
tingkat return suatu aset, semakin besar risiko yang harus dihadapi. Sebaliknya, jika tingkat
return rendah risiko yang ditanggung pun akan lebih rendah [2]. Oleh karena itu, return menjadi
parameter penting dalam pengambilan keputusan investasi, baik dalam jangka pendek maupun
jangka panjang [3].

Sejalan dengan fluktuasi harga yang tinggi, volatilitas juga menjadi aspek penting untuk
dipahami oleh investor. Ketika volatilitas tinggi, harga emas cenderung bergerak secara tajam,
sehingga menyebabkan selisih harga yang cukup besar antara harga tertinggi dan terendah
dalam suatu periode [4]. Volatilitas mencerminkan risiko terkait dengan perubahan nilai harga
aset, dimana ketika harga suatu aset sering berubah-ubah maka tingkat volatilitas akan tinggi,
artinya resiko lebih besar [5]. Mengingat volatilitas yang tinggi ini, pemodelan volatilitas return
emas sangat penting untuk membantu investor dalam memahami dan mengelola risiko yang
terkait dengan fluktuasi harga tersebut [6]. Model volatilitas yang tepat dapat membantu
investor untuk memprediksi volatilitas return di masa depan dan membuat keputusan investasi
yang lebih terukur, sehingga pemilihan metode yang tepat untuk memodelkan volatilitas sangat
penting untuk mengoptimalkan strategi investasi di pasar emas [7].

Dalam analisis deret waktu (time series), beberapa asumsi dasar harus dipenuhi untuk
menghasilkan metode yang valid, diantaranya tidak adanya autokorelasi, tidak ada
heteroskedastisitas, serta distribusi residual yang normal. Heteroskedastisitas sering kali
muncul akibat fluktuasi acak dalam data yang menyebabkan varians menjadi tidak konstan [8].
Oleh karena itu, salah satu pendekatan yang digunakan dalam menganalisis data time series
dengan sifat long memory adalah model Autoregressive Fractionally Integrated Moving Average
(ARFIMA) [9]. Dengan model ini, pola pergerakan harga emas dalam jangka panjang dapat
diidentifikasi dengan lebih akurat. Namun, akurasi model ARFIMA dapat lebih ditingkatkan
dengan penerapan pendekatan inferensi Bayesian, yang dikenal sebagai model Bayesian
ARFIMA [10]. Dalam hal ini, metode Geweke dan Porter-Hudak (GPH) digunakan untuk
mengestimasi parameter diferensiasi secara langsung tanpa perlu menentukan ordo
Autoregressive (AR) dan Moving Average (MA) secara eksplisit [11]. Dengan mempertimbangkan
faktor-faktor seperti memori jangka panjang dalam data harga emas, pemodelan yang lebih tepat
dapat dibangun [12].

Penggunaan model ARFIMA yang dihybrid dengan pendekatan Bayesian merupakan salah
satu bentuk inovasi dalam pemodelan deret waktu (time series) yang masih jarang diteliti.
Pendekatan ini merupakan penggabungan antara kemampuan ARFIMA dalam menangkap pola
memori jangka panjang (long memory) dengan keunggulan Bayesian dalam mengelola
ketidakpastian parameter serta memberikan estimasi yang lebih fleksibel [13]. Pendekatan
Bayesian ARFIMA diterapkan untuk mengatasi keterbatasan ukuran sampel (small sample size).
Estimasi parameter dalam pendekatan Bayesian dilakukan dengan metode Markov Chain Monte
Carlo (MCMC). Metode Markov Chain Monte Carlo (MCMC) merupakan pendekatan secara
numerik yang dilakukan untuk memperoleh distribusi posterior dari parameter yang tidak
diketahui, terutama untuk distribusi yang bersifat kompleks [14].

Beberapa penelitian sebelumnya telah mengeksplorasi penerapan pendekatan Bayesian
dalam model deret waktu. Sebagai contoh, beberapa penelitian menunjukkan bahwa pendekatan
Bayesian pada model Autoregressive (AR) dengan algoritma Gibbs sampling Monte Carlo
memberikan hasil yang lebih akurat [15], Model Volatilitas Return Index Saham Syariah
Indonesia Melalui Pendekatan Bayesian Markov Switching GARCH[1]. Selain itu, penelitian lain
mengembangkan pendekatan Bayesian untuk pendugaan parameter model Moving Average (MA)
[16], serta menerapkan pendekatan Bayesian pada model Autoregressive Fractionally Moving
Average (ARFIMA) untuk memodelkan data time series dengan sifat long memory [17].
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Pendekatan Bayesian juga terbukti memberikan ketepatan peramalan yang lebih tinggi dalam
mengestimasi return harga logam mulia dibandingkan dengan model klasik [18]. Selain itu,
model berbasis Bayesian sangat berguna dalam mengelola ketidakpastian parameter dan
memodelkan data keuangan dengan struktur dependensi yang kompleks [19], [20].

Berdasarkan tinjauan tersebut, penelitian ini mengusulkan penggunaan pendekatan
inferensi Bayesian ARFIMA untuk memodelkan return harga emas. Dengan menggunakan model
ini, diharapkan dapat diperoleh informasi yang lebih akurat mengenai dinamika harga emas dan
karakteristik volatilitas jangka panjangnya. Pendekatan ini diharapkan dapat memberikan
kontribusi signifikan dalam pengambilan keputusan investasi serta manajemen risiko terkait
aset emas, sehingga dapat membantu investor merencanakan strategi investasi yang lebih
optimal di pasar emas.

2. Metode Penelitian

2.1 Jenis Penelitian

Penelitian ini termasuk dalam kategori penelitian kuantitatif karena berfokus pada analisis
data numerik dengan menggunakan pendekatan statistik dan matematis. Tujuan utama dari
penelitian ini adalah untuk mengidentifikasi dan menganalisis karakteristik memori jangka
panjang (long memory) serta volatilitas dari harga emas dalam bentuk deret waktu (time series),
melalui penerapan model inferensi Bayesian ARFIMA (Autoregressive Fractionally Integrated
Moving Average) yang memungkinkan estimasi parameter secara lebih fleksibel dan akurat,
terutama dalam menangani data deret waktu yang kompleks.

2.2 Waktu dan Tempat Penelitian

Penelitian ini dilakukan di Laboratorium Matematika Universitas Andalas sebagai pusat
pelaksanaan analisis data dan pemodelan statistik. Seluruh tahapan penelitian, mulai dari tahap
perancangan metode, pengolahan data, hingga interpretasi hasil dilakukan dalam rentang waktu
sekitar enam bulan.

2.3 Target dan Sasaran Penelitian

Target dari penelitian ini adalah data harga emas yang merupakan salah satu aset
keuangan strategis dan sering digunakan sebagai tolak ukur dalam menilai kestabilan dan
perkembangan kondisi ekonomi. Adapun sasaran dari penelitian ini adalah untuk membangun
model yang mampu mengidentifikasi karakteristik memori jangka panjang dan dinamika
volatilitas harga emas melalui pendekatan inferensi Bayesian pada model ARFIMA, sehingga
dapat memberikan hasil estimasi parameter yang lebih akurat dan informatif.

2.4 Prosedur Penelitian

Prosedur penelitian ini dilakukan dengan tahapan sebagai berikut:
1. Pemilihan dan Deskripsi Data

Penelitian ini menggunakan data sekunder yaitu harga emas bulanan dari Januari 2014
hingga Desember 2024, dengan total sebanyak 132 data. Data tersebut diperoleh melalui situs
web investing.com dan diolah menggunakan perangkat lunak statistik berupa RStudio.

2. Data Return

Data return merupakan hasil transformasi dari data harga menjadi bentuk perubahan
relatif dari waktu ke waktu, yang bertujuan untuk mengukur pertumbuhan atau penurunan
nilai suatu aset. Dalam analisis deret waktu (fime series), data harga emas dikonversi menjadi
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data return agar data bersifat stasioner dan merepresentasikan perubahan relatif dari satu
periode ke periode berikutnya. Perhitungan data return dilakukan berdasarkan harga bulanan
emas dengan menggunakan transformasi logaritma dan proses differencing (pembedaan).
Transformasi ini dilakukan untuk menstabilkan varians dan mengurangi tren pada data. Rumus
perhitungan return yang digunakan adalah sebagai berikut:

e =1In (;:—_J (D)

dimana:
r. :return pada periode ke-t,
P, :harga emas pada periode ke-t,
P._; : harga emas pada periode sebelumnya.
3. Uji Stasioneritas

Uji stasioneritas dilakukan untuk melihat data memiliki karakteristik statistik yang
konstan sepanjang waktu atau tidak, seperti rata-rata (mean) dan varians yang tidak berubah.
Sifat stasioner sangat penting dalam analisis deret waktu (time series), terutama sebelum
melakukan pemodelan, karena model ARFIMA mengasumsikan bahwa data yang digunakan
telah stasioner. Jika hasil pengujian menunjukkan bahwa data bersifat tidak stasioner, maka
akan dilakukan transformasi, seperti proses differencing (pembedaan), agar data memenuhi
syarat stasioneritas dan dapat dianalisis lebih lanjut secara valid.
4. Uji Long Memory

Uji long memory dilakukan untuk mengidentifikasi adanya pola ketergantungan jangka
panjang dalam data deret waktu (time series). Ketergantungan jangka panjang (long memory)
ditandai dengan nilai autokorelasi yang menurun secara perlahan seiring bertambahnya lag
serta pola volatilitas yang bertahan dalam jangka panjang.
5. Estimasi Parameter d

Estimasi parameter d dilakukan dengan menggunakan metode Geweke and Porter-Hudak
(GPH). Metode ini merupakan salah satu pendekatan semiparametrik yang banyak digunakan
untuk mengestimasi parameter memori jangka panjang dalam deret waktu.
6. Identifikasi model ARFIMA

Identifikasi model Autoregressive Fractionally Integrated Moving Average (ARFIMA)
diperoleh dengan menganalisis plot Autocorrelation Function (ACF) dan Partial Autocorrelation
Function (PACF), dimana plot ACF menunjukkan orde MA (q) dan plot PACF menunjukkan orde
AR (p).
7. Uji Diagnostik

Uji diagnostik dilakukan untuk memastikan model ARFIMA yang telah diperoleh sudah
memenuhi asumsi-asumsi dasar yang diperlukan dalam analisis deret waktu (time series). Uji
diagnostik yang dilakukan diantaranya yaitu, uji heteroskedastisitas, uji autokorelasi, dan uji
normalitas.
a. Uji Heteroskedastisitas

Uji heteroskedastisitas bertujuan untuk mengetahui bahwa varians dari residual bersifat
konstan (homoskedastis) atau tidak (heteroskedastis) dari waktu ke waktu. Jika residual tidak
memiliki pola tertentu dan menyebar secara acak, maka model dianggap memenuhi asumsi
homoskedastisitas.
b. Uji Autokorelasi

Uji autokorelasi dilakukan untuk mengidentifikasi adanya hubungan antar residual pada
periode waktu yang berbeda. dJika residual tersebar secara acak dan tidak menunjukkan pola
keterkaitan dengan nilai residual sebelumnya, maka dapat dikatakan bahwa residual tidak
saling berkorelasi. Sehingga, model memenuhi asumsi tidak adanya autokorelasi.
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c. Uj Normalitas

Uji normalitas dilakukan untuk mengetahui bahwa distribusi residual mendekati distribusi
normal. Jika pola penyebaran residual mendekati distribusi normal, maka model dapat
dikatakan memenuhi asumsi normalitas.
8. Identifikasi model inferensi Bayesian ARFIMA

Proses identifikasi model inferensi Bayesian ARFIMA dimulai dengan tahap estimasi
parameter model menggunakan pendekatan Bayesian. Estimasi ini dilakukan dengan memilih
distribusi prior yang sesual untuk masing-masing parameter dalam model ARFIMA.
Selanjutnya, teknik komputasi berbasis simulasi seperti Markov Chain Monte Carlo (MCMC)
digunakan untuk memperoleh distribusi posterior dari parameter-parameter tersebut secara
akurat. Melalui proses iterasi yang memadai, distribusi posterior memungkinkan peneliti untuk
mengestimasi nilai parameter secara lebih bagus dengan mempertimbangkan ketidakpastian
yang ada. Setelah parameter berhasil diestimasi, langkah selanjutnya adalah mengevaluasi
kelayakan model dengan menghitung nilai kriteria pemilihan model, yaitu Akaike Information
Criterion (AIC) dan Bayesian Information Criterion (BIC).

3. Hasil dan Pembahasan

3.1 Deskripsi Data

Penelitian ini menggunakan data harga emas bulanan dari periode Januari 2014 hingga
Desember 2024, sehingga jumlah data yang dianalisis sebanyak 132 data. Data tersebut
selanjutnya dianalisis pola datanya untuk mengamati kestasioneran dengan cara membuat plot
data deret waktu (time series). Plot data harga emas dapat dilihat pada Gambar 1. berikut ini.
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Gambar 1. Plot data bulanan indeks harga emas

Berdasarkan Gambar 1. terlihat bahwa pergerakan harga emas mengalami pola fluktuatif
yang tidak konsisten sepanjang waktu, dengan kecenderungan tren naik dan turun pada periode
tertentu serta variasi amplitudo yang semakin membesar di beberapa waktu. Pola tersebut
menunjukkan bahwa data harga emas bulanan belum memenuhi asumsi kestasioneran, baik
dalam rata-rata (mean) maupun varians. Sehingga diperlukan proses transformasi lebih lanjut,
yaitu dengan mengubah data ke dalam bentuk data return sebelum dilakukan proses pemodelan.

3.2 Data Return

Data return yang dihitung berdasarkan persamaan (1) menghasilkan nilai yang sama
dengan data return yang diperoleh melalui proses differencing (pembedaan) pada data hasil
transformasi logaritma data bulanan harga emas. Sehingga data dapat dikatakan sudah
stasioner. Berikut ini1 adalah plot time series dari data return harga emas.
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Gambar 2. Plot time series data return harga emas

Berdasarkan Gambar 2. dapat dilihat bahwa grafik dari data return harga emas berfluktuasi
disekitar nilai rata-rata yang mendekati nol. Tingkat volatilitas tertinggi terjadi pada tahun
2016. Pola fluktuasi yang tinggi menunjukkan bahwa ragam kesalahan (error variance) pada
data bersifat tidak konstan. Volatilitas yang tinggi berada pada nilai return positif maupun
negatif serta fluktuasi yang lebih tinggi cenderung membentuk kelompok (clustering), yang
dipisahkan oleh periode dengan fluktuasi yang lebih rendah. Dengan demikian, Gambar 2.
menunjukkan adanya pengelompokkan volatilitas (volatility clustering), yaitu kondisi dimana
return besar (baik positif maupun negatif) cenderung diikuti oleh return besar lainnya.
Selanjutnya, berdasarkan hasil uji ADF untuk data return harga emas diperoleh nilai
p —value < a, sehingga dapat disimpulkan bahwa data tersebut bersifat stasioner.

3.3 Uji Long Memory

Uji long memory dilakukan untuk mengidentifikasi data yang akan dimodelkan memiliki
karakteristik ketergantungan jangka panjang (long memory). Identifikasi ini dilakukan dengan
melihat plot Autocorrelation Function (ACF), plot periodogram, dan uji Hurst. Plot ACF dan
periodogram ditunjukkan pada Gambar 3. dan Gambar 4. berikut ini.
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Gambar 3. Plot Autocorrelation Function (ACF) sebelum differencing
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Gambar 4. Plot periodogram

Dari Gambar 3. dan Gambar 4. dapat dilihat bahwa plot ACF sebelum differencing
menunjukkan autokorelasi yang turun secara lambat menuju angka 0, sehingga membentuk pola
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hiperbolik dan pada plot periodogram menunjukkan frekuensi yang semakin mendekati nol
meningkat menuju nilai yang sangat besar tetapi berhingga. Kemudian, dari hasil uji Hurst
diperoleh nilai statistik Hurst sebesar 0.8289989, yang berarti berada direntang 0.3 < H =1,
Sehingga, dari hasil plot ACF, plot periodogram, dan uji Hurst dapat disimpulkan bahwa data
memiliki ketergantungan jangka panjang (long memory).

3.4 Estimasi Parameter d

Estimasi parameter d (differencing) dihitung menggunakan model Geweke & Porter-Hudak
(GPH). Hasil perhitungan menggunakan software R Studio diperoleh nilai estimasi parameter d
sebesar 0.01536385. Dengan demikian, nilai estimasi parameter d berada pada interval
0 < d < 0.5, yang menunjukkan adanya ketergantungan jangka panjang yang bersifat positif
antar pengamatan yang terpisah jauh (long-range dependence).

3.5 Identifikasi Model ARFIMA

Identifikasi model ARFIMA ditentukan berdasarkan plot Autocorelation Function (ACF) dan
Partial Autocorrelation Function (PACF). Parameter model AR(p) dapat diduga melalui grafik
PACF, sedangkan parameter model MA (q) diperoleh melalui grafik ACF. Penyajian plot ACF
dan PACF dapat dilihat pada Gambar 5. sebagai berikut.

ACF Return
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S T T T
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Gambar 5. Plot ACF data return harga emas
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Gambar 6. Plot PACF data return harga emas

Berdasarkan Gambar 5. dan Gambar 6. menunjukkan bahwa model-model dugaan
sementara dapat dibentuk dengan mengamati plot Autocorrelation Function (ACF) dan Partial
Autocorrelation Function (PACF) dari data return harga emas. Pada plot ACF, terlihat pola
menurun secara perlahan dan signifikan pada beberapa lag awal, yang menunjukkan adanya
ketergantungan jangka panjang (long memory) dalam data. Kemudian, plot PACF tidak
memperlihatkan nilai signifikan pada lag ke-1 maupun lag-lag berikutnya, sehingga dapat
disimpulkan bahwa tidak terdapat komponen Autoregressive (AR) yang dominan dalam proses
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tersebut. Sebaliknya, plot ACF memperlihatkan nilai signifikan pada lag ke-1, dan nilai-nilai
berikutnya secara bertahap mengecil. Pola ini sesuai dengan karakteristik dari komponen
Moving Average (MA), khususnya MA orde 1. Sehingga, model dugaan sementara yang sesuai
adalah ARFIMA(O, d, 1).

Setelah identifikasi model ARFIMA, langkah selanjutnya adalah estimasi model ARFIMA(O,
d, 1). Estimasi dari model ARFIMA(O, d, 1) ditunjukkan pada Tabel 1. berikut:

Tabel 1. Estimasi parameter model ARFIMA(O, d, 1)

Parameter Estimasi Std. Error
MA (1) -0.0289 0.0879
Mean 0.0058 0.0033

Berdasarkan hasil estimasi pada Tabel 1., maka model ARFIMA dapat ditulis dalam bentuk
persamaan sebagai berikut:
Y, = (1 — B) "M% [0, 0058 + (1 + 0.0289B)e,] 2)

3.6 Uji Diagnostik

Uji diagnostik dilakukan untuk memastikan bahwa residual dari model ARFIMA(0,d,1)
telah memenuhi asumsi-asumsi dasar dalam pemodelan deret waktu (time series), yang
diantaranya yaitu memiliki efek heteroskedastisitas, tidak menunjukkan adanya autokorelasi,
dan distribusi residual yang mendekati normal. Hasil uji tersebut dapat dilihat sebagai berikut.
1. Uj Heteroskedastisitas

Uji Heteroskedastisitas dilakukan dengan uji ARCH-LM Test (Autoregressive Conditional
Heteroskedasticity Test) untuk melihat varian residual dari model ARFIMA(O,d,1) memiliki efek
heteroskedastisitas atau tidak. Hasil uji diperoleh nilai p —value sebesar 0.5423, dimana
p —value = & . Sehingga, dapat disimpulkan bahwa model ARFIMA(0,d,1) memiliki efek
heteroskedastisitas.
2. Uji Autokorelasi

Uji autokorelasi dilakukan dengan uji Ljung-Box. Uji ini bertujuan untuk mengetahui
bahwa residu model saling berkorelasi atau tidak. Jika residu model memiliki korelasi antara
satu sama lain, maka model yang terbentuk menjadi model yang tidak baik sehingga haruslah
residu model tidak saling berkorelasi. Berdasarkan hasil uji Ljung-Box diperoleh nilai p — value
sebesar 0.9223 lebih besar dari . Dengan demikian, model ARFIMA(0,d,1) tidak menunjukkan
adanya autokorelasi pada residunya.
3. Uji Normalitas

Uji normalitas pada penelitian ini dilakukan dengan uji Jarque-Bera. Kriteria yang
digunakan yaitu jika nilai p — value = o, maka residual dianggap berdistribusi normal. Hasil uji
pada model ARFIMA(O,d,1) menunjukkan nilai p —value sebesar 0.4382197. Karena nilai
p —value lebih besar dari &, maka dapat disimpulkan bahwa residual dari model ARFIMA(0,d,1)
memenuhi asumsi uji normalitas.

3.7 Identifikasi Model Inferensi Bayesian ARFIMA

Model inferensi Bayesian ARFIMA merupakan pengembangan dari model ARFIMA yang
parameternya diestimasi menggunakan pendekatan Bayesian. Estimasi parameter dilakukan
dengan algoritma No-U-Turn Sampler (NUTS), bagian dari metode Markov Chain Monte Carlo
(MCMC). Algoritma NUTS dipilih karena kemampuannya dalam menangani model statistik
yang kompleks secara efisien, mengurangi autokorelasi antar iterasi, serta menghasilkan sampel
yang representatif dari distribusi posterior parameter.
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Sebelum proses estimasi, tentukan terlebih dahulu distribusi prior untuk masing-masing
parameter. Parameter i dan ¢, yang nilainya berada pada domain bilangan real, diasumsikan
mengikuti distribusi Normal dengan mean nol dan varians tertentu. Sedangkan parameter o,
yang merepresentasikan standar deviasi dari residual dan hanya bernilai positif, diasumsikan
mengikuti distribusi prior Half-Cauchy. Pemilihan prior bersifat weakly informative, artinya
memberikan informasi awal tanpa mendominasi hasil estimasi parameter.

Prior Normal untuk parameter u(u~N(0,5)) mencerminkan asumsi bahwa rata-rata return
berada di sekitar nol dengan variabilitas yang cukup luas. Prior Half-Cauchy pada parameter
o(a~Half — Cauchy(0.2)) dipilih karena mampu menangani nilai ekstrem dan membantu stabilisasi

estimasi varians. Sementara itu, prior Normal pada parameter @(g~nN(0,0.5)) digunakan untuk

mencerminkan batasan stasioneritas, yakni nilai ¢ berada dalam rentang (-1, 1). Secara
matematis, distribusi Normal dipilih karena bersifat simetris dan efisien secara komputasi,
distribusi Half-Cauchy memberikan regularisasi yang baik untuk parameter skala, serta
pembatasan pada ¢ menjamin kestabilan model inferensi Bayesian ARFIMA.

Selanjutnya, proses iterasi dilakukan sebanyak 10.000 kali untuk memperoleh hasil estimasi
parameter yang stabil dan mendekati nilai sebenarnya berdasarkan distribusi posteriornya.
Selama proses ini, dihasilkan distribusi posterior dari masing-masing parameter model, yang
kemudian diringkas dalam bentuk nilai tengah (mean), standar deviasi, interval kepercayaan
95% (2.5% — 97.5%), nilai efisiensi sampel (n-eff), dan statistik konvergensi (Rhat). Hasil estimasi
parameter dari model inferensi Bayesian ARFIMA ditampilkan pada Tabel 2. berikut:

Tabel 2. Estimasi parameter model Bayesian ARFIMA

Parameter Mean Standar Deviasi 2.5% 97.5% n-eff Rhat
H 0.005414262 0.003488583 -0.001487406 0.01216471 4093.095 1.0006054
o 0.039071373 0.002463753 0.034563730 0.04432642 3752.201 1.0003910
o -0.020799371 0.088497097 -0.192213395 0.15241468 4061.517 0.9994941

Dari Tabel 2. dapat dilihat bahwa nilai Rhat untuk seluruh parameter mendekati 1, yang
menunjukkan bahwa proses sampling telah mencapai konvergensi dengan baik dan stabil selama
iterasi. Nilai n_eff yang tinggi untuk semua parameter menunjukkan bahwa jumlah sampel
efektif memadai untuk merepresentasikan distribusi posterior secara akurat.

Secara umum, nilai rata-rata 4 sebesar 0.005414262 menunjukkan bahwa return bulanan
harga emas dalam periode pengamatan cenderung bernilai positif. Nilai ¢ sebesar 0.039071373
menunjukkan tingkat volatilitas atau fluktuasi harga emas yang tergolong normal. Sementara
itu, nilai ¢ sebesar —0.020799371 mengindikasikan adanya efek negatif yang sangat lemah dari
return periode sebelumnya terhadap return saat ini, dengan interval kepercayaan 95% antara
—0.192213395 hingga 0.15241468, sehingga efek ini tidak signifikan secara statistik. Hasil ini
menunjukkan adanya pola memori jangka panjang (long memory) dalam data return harga emas,
sehingga pemilihan model inferensi Bayesian ARFIMA tepat untuk digunakan dalam analisis
ini.

Berdasarkan Tabel 2., model inferensi Bayesian ARFIMA dapat ditulis dalam bentuk
persamaan sebagai berikut:
Y, = (1 — By "5 [0,005414262 +€, — 0.020799371€,_, ] (3)

dengan residual €, mengikuti distribusi normal:
€,~N(0,6°), dengan o = 0.039071373 (4)
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Untuk memastikan bahwa model inferensi Bayesian ARFIMA diestimasi dengan baik dan
konvergen, analisis diagnostik melalui visualisasi hasil sampling, yang mencakup histogram
posterior, trace plot, dan plot Autocorrelation Function (ACF) dari setiap parameter. Ketiga plot
tersebut memberikan gambaran mengenai distribusi posterior, stabilitas rantai Markov, serta
keberadaan autokorelasi pada proses sampling, sehingga dapat dijadikan indikator keberhasilan
proses inferensi Bayesian. Visualisasi hasil tersebut ditampilkan pada gambar-gambar berikut.
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Gambar 7. Plot histogram hasil MCMC
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Gambar 8. Trace plot hasil MCMC
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Gambar 9. Plot ACF hasil MCMC

Berdasarkan Gambar 7. dapat dilihat bahwa plot histogram terdistribusi hasil simulasi
secara simetris dan terpusat di sekitar nol. Hal ini menunjukkan bahwa estimasi parameter
dengan pendekatan inferensi Bayesian ARFIMA bersifat stabil dan tidak menunjukkan adanya
skewness yang mencolok. Distribusi posterior yang menyerupai distribusi normal menunjukkan
bahwa hasil estimasi dari parameter model tersebut tersebar secara merata dan tidak bias
secara signifikan.

Selanjutnya pada Gambar 8. menunjukkan trace plot dari hasil Markov Chain Monte Carlo
(MCMC) berfluktuasi secara acak di sekitar nilai rata-rata dan tidak ada tren yang jelas pada
plot tersebut. Sehingga model inferensi Bayesian ARFIMA dapat dikatakan telah mencapai
konvergensi dan estimasi distribusi posterior sudah stabil. Pada Gambar 9. menampilkan plot
Autocorrelation Function (ACF) dari residual model. Pada plot ini terlihat bahwa sebagian besar
lag tidak menunjukkan nilai autokorelasi yang signifikan secara statistik. Tidak adanya
autokorelasi yang signifikan menunjukkan bahwa model tidak mengalami underfitting dan error
atau noise yang tersisa bersifat acak (white noise).

Dari ketiga plot di atas, yaitu plot histogram, trace plot, dan plot ACF menunjukkan bahwa
plot tersebut memberikan hasil yang bagus untuk model inferensi Bayesian ARFIMA. Dengan
demikian, model yang dibangun tidak hanya layak secara statistik, tetapi juga dapat diandalkan
untuk keperluan peramalan dan analisis risiko dalam konteks pergerakan harga emas.

Berdasarkan hasil evaluasi visual terhadap ketiga plot diagnostik, dapat disimpulkan
bahwa model memiliki karakteristik residual yang cukup baik. Selanjutnya, analisis kuantitatif
dilakukan dengan menggunakan Akaike Information Criterion (AIC) dan Bayesian Information
Criterion (BIC) untuk mengidentifikasi model dengan kinerja terbaik, sebagaimana ditunjukkan
pada Tabel 3.

Tabel 3. Hasil perhitungan nilai AIC dan BIC

Model AIC BIC
ARFIMA -474.7184 -468.968
Bayesian ARFIMA -475.2392 -469.6136
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Berdasarkan nilai AIC dan BIC pada Tabel 3., model inferensi Bayesian menunjukkan
kecocokan yang lebih baik dibandingkan model ARFIMA dalam menganalisis data return harga
emas. Perbedaan nilai error kedua model relatif kecil, namun model inferensi Bayesian mampu
menangkap pola long memory dengan lebih stabil dan memberikan estimasi parameter yang
efisien. Pendekatan ini juga memungkinkan analisis ketidakpastian parameter secara eksplisit,
yang sangat berguna dalam pengambilan keputusan investasi dan prediksi risiko pada data
harga emas yang fluktuatif dan dipengaruhi faktor eksternal jangka panjang. Meskipun selisih
nilai AIC dan BIC tidak terlalu besar, model inferensi Bayesian menawarkan fleksibilitas dalam
penentuan prior dan pengambilan keputusan berbasis distribusi posterior, yang tidak tersedia
dalam model ARFIMA.

4. Kesimpulan

Berdasarkan hasil dan pembahasan, dapat disimpulkan bahwa model inferensi Bayesian
ARFIMA terbukti efektif untuk menganalisis data return harga emas yang memiliki
karakteristik memori jangka panjang (long memory). Berdasarkan nilai AIC dan BIC, model ini
menunjukkan kecocokan yang lebih baik dibandingkan model ARFIMA, serta menghasilkan
estimasi parameter yang stabil berdasarkan evaluasi konvergensi. Pendekatan Bayesian
memiliki keunggulan dalam mengakomodasi ketidakpastian parameter secara eksplisit dan
memberikan fleksibilitas dalam proses estimasi sangat relevan untuk data harga emas yang
fluktuatif dan dipengaruhi faktor eksternal jangka panjang. Hasil ini mendukung penerapan
model sebagai pendekatan yang terpercaya dalam pengambilan keputusan investasi dan strategi
manajemen risiko. Untuk penelitian selanjutnya, disarankan menggunakan data dengan
frekuensi lebih tinggi, seperti mingguan atau harian, agar pola volatilitas dapat dianalisis lebih
rinci. Hasil penelitian ini juga dapat menjadi masukan bagi investor dalam merancang strategi
investasi jangka panjang terhadap dinamika harga emas.
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