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This paper addresses the problem of determining the total vertex irregularity strength of the series-parallel
graph family sp(m,r,3) form = 4andr = 2.The total vertex irregularity strength tvs(G) of a
graph G is defined as the smallest integer k such that there exists a total k-labelling f: V(G) U E(G) —
{1,2,..., kY where the vertexweights w(v) = f (V) + Yyenq) f (vX) aredistinct for eachvertex.
The graph family sp(m,r,3) is generated through repeated series and parallel compositions, with
parameters m, 1, and d fixed structural parameter 3. To solve this problem, we construct an explicit total
labelling that ensures distinct vertex weights, providing an upper bound for tvs(sp(m,r,3)).
Additionally, we perform a structural analysis of the graph, which yields a matching lower bound. The
results demonstrate that the total vertex irregularity strength of sp(m,r,3) is given by
tvs(sp(m,1,3)) = [(3mr + 2)/2]. This work contributes a new insight into the
characterization of the total vertex irregularity strength for this specific class of graphs, providing both
upper and lower bounds for sp(m, r, 3).

Penelitian ini membahas permasalahan dalam menentukan nilai total ketakteraturan titik pada keluarga
graf seri-paralel sp(m, v, 3) untukm = 4danr > 2.Nilaitotal ketakteraturantitik tvs (G) untuk
suatu graf G didefinisikan sebagai nilai minimum k sehingga terdapat pelabelan total f:V(G) U
E(G) - {1,2,..., k} dengan bobot titik w(v) = f(v) + Xienqw) f(vx) yang berbeda untuk
setiap titik. Keluarga graf sp(m, r, 3) dibangun melalui komposisi seri dan paralel secara berulang,
dengan parameter m,r, dan parameter struktur tetap 3. Untuk menyelesaikan masalah ini, kami
mengonstruksi pelabelan total eksplisit yang memastikan bobot titik saling berbeda, schingga
menghasilkan batas atas untuk tvs(sp(m,r, 3)). Selain itu, kami melakukan analisis struktur graf
untuk memperoleh batas bawah yang sesuai. Hasil penelitian ini menunjukkan bahwa total vertex
irregularity strength untuk sp(m,r,3) diberikan oleh tvs(sp(m,r,3)) = [B3mr + 2) /2].
Penelitian ini memberikan kontribusi berupa wawasan baru dalam karakterisasi nilai total
ketakteraturan titik untuk kelas graf ini, dengan menyediakan batas atas dan batas bawah untuk
sp(m,r, 3).

©2025 by the authors. Submitted for possible open access publication under the terms
and conditions of the

Creative Commons Attribution-ShareAlike 4.0 International License-(CC-BY-SA)
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1. Introduction

Graphs, which consist of multiple vertices and edges connecting them, can be used to model a

wide range of real-world situations. It is important to note that a graph represents whether a pair

of vertices is connected by an edge. The definition of graphs arises from the mathematical

abstraction of such conditions [1]. In graph labelling, a labelling function is defined as a mapping

with an explicit domain and codomain. Specifically, for a graph G = (V,E), a (vertex) labelling is a

function f:V — N, an edge labelling is a function f:E — N, and a total labelling is a function f:V U

E - N (or equivalently f:V U E - {1,2, ..., k} for some integer k) [2]. Graph labeling has been used in

many applications like communication network addressing, software testing, information security,

technology and sports tournament scheduling, and coding theory problems including the design of

good radar location codes, missile guidance codes, and convolution codes, secret sharing methods,

and models for constraint programming across finite domains, labeled graphs are helpful models

[3].

-160 -


https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Marzuki et al Vol. 5 No. 2, Juli-Desember 2025 pp. 160-175

Graph G is characterized as a set match, composed with the notation G = (V,E), where V is a
non-empty set of points (vertices or nodes), and E is the set of lines (edges or arcs) that join two
vertices. Discrete items and the relationships between them are represented by graphs [4]. Graph
labelling is the process of assigning labels, which are often represented by integers, to the edges
and/or vertices of a graph in the mathematical field of graph theory [3].

The idea of k-labelling, which is irregular labelling on a graph G defined as a mapping of a set
of edge e of G to an integer {1,2,...,k} such that each vertex v has a distinct weight, was first
described in[5]. The weighted of the vertex v, denoted by w(v), is the sum of the labels v and the
labels of edges linked with v. The weighted edge e, denoted as w(e), is the sum of labels e and labels
for all vertices connected to e. Several studies related to vertices include graceful vertex labeling on
graphs (5,8)[6], graceful vertex labeling on graphs (5,7)[7] and graceful vertex labeling on graphs
(7,8)[8].

The concept of examining irregular total k-labelling was presented in [9]. A vertex irregular
total k-labelling of G is defined as follows: for every two distinct vertices x and y of G, there is w(x) #
w(y). Similarly, an edge irregular total k-labelling of graph G is defined as follows: for every two
distinct edges e and f of graph G, there is w(e) # w(f). The graph G's total edge irregularity
strength, represented by tes(G), is the lowest k for which the graph has an edge irregular total k-
labelling. In a similar vein, we define tvs(G), the total vertex irregularity strength of G, as the
lowest k for which a vertex irregular total k-labelling of G exists.

The study of irregular total labelling in a graph continues to grow. In a study [10], the
5n-3
o

irregularity strength of the Diamond graph Br. was examined, where, for n > 3, tes(Br,) = [

and tvs(Br,) = [nﬂ

] The total edge irregularity strength of the Kite graph (n,t) was then presented

n+t+2

in[11], which demonstrated that for n > 3 and ¢ > 1, showed tes(n,t) = [ ] The total edge

irregularity strength of centralized uniform theta graphs, 0*(n;m;p), was pubhshed later in [2] and
yielded the following conclusion for n >3, m > 1, and p > 3: tes(@ * (n; m; p)) = [M]]. Then,
according to study in [12], the total irregularity strength of the comb product of a two-cycle graph C,, and

Cy is tvs(C,, =, Cy) = [@] for m = 3 and n > 3, whereas the total irregularity value of a two-star

n(m+1)+1

graph S,, and S, 1s tvs(S,, =, S,) = [ ] form > 2 and n = 2. The total irregularity edge strength of

[M], form = 2 and n = 6, were presented in [13].

the m-copy of the path graph B, is tes (mPn) =
One of the results of the total irregularity strength of the tadpole chain graph T,.(4,1) was

tvs(T (4, 1)) [Mnl for r > 3. This was demonstrated in[14]. The total edge irregularity strength for

the ladder graph SC», double ladder graph DSCx with tes(DSC,) = [M] mirror ladder graph

MSC,, and double ladder graph DSC,, with tes(MSC,) =
In his study [16], Hinding looks at a hexagon cluster network HC(n)'s total vertex irregularity
strength and finds the values for tvs(HC (n)) = (3n2+1) n= 2.

Some attention was also paid to the total edge irregularity strength of parallel series graphs. A
series parallel graph sp(m,r, ) has an overall edge irregularity value of [17], which can be found by
writing tes(sp(m T, l)) [M] for r > 1. This is one of the writings by Winarsih. The total

irregularity vertex on a series parallel graph has been determined by Marzuki, et. al. [18] and
Riskawati [19] in their respective publications. For m > 4 on the graph sp(m,1,3), the value is

tvs(sp(m 1 3)) [3m+2

tvs(sp(m,r,Z)) = [
found in those studies to be sp(m,r,3) form > 4 and r> 2.

[M] was determined by study [15].

], and for m = 3 and r > 3, the value on the graph sp(m,r,2) 1is

2mr+2

]. The overall vertex irregularity strength of a parallel series graph was

d htep://dx.doi.org/10.30983/10483
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2. Methods

In this paper, we consider the finite undirected graph G without loops and multiple edges with
vertex set V(G) and edge set E(G). The degree of a vertex x is the number of edges that have x as
an endpoint, and the set of neighbours of x is denoted by N(x). If the domain of the labelling function
f(x) is the vertex set or the edge set, the labelling is called, respectively, vertex labelling or edge
labelling. If the domain is V(G)U E (G), then we call the labelling a total labelling.

Regard to a total k—labelling of G, that is, f: V(G)U E(G) — {1,2,3,: - -, k}. The associated vertex
weight of a vertex x € V(G) under a total k—labelling f is defined as w(x) = f(x) + Xpencx) f(xV). A
total k—labelling f is defined to be a vertex irregular total k—labelling of G if for every two different
vertices x and y of G, wt(x) # wt(y). The minimum positive integer k for which G has a vertex
irregular total k—labelling is called the total vertex irregularity strength of G, denoted by tvs(G).

Assume that the graph G = (V, E) consists of a set of edges connecting a pair of vertices (E) to
a non-empty set of vertices (V). If a graph is made up of a series composition of three uniform theta
graphs, with m representing each theta graph's longitude and r denoting the number of degree 2
vertices that cross each longitude, it is referred to as a parallel series graph sp(m,r, 3). lllustration
of graph sp(m, r, 3) is given in Figure 1 below.

V(3m—3)r
V(3m-3)r+2Y(3m-3)r+3 V(@m-2)r42’ Gm-2)r+3 Viam-1)r+2V@m-1r+3

Figure 1. Graph illustration sp(m,r, 3)

The graph sp(m,r,3) has a defined set of vertices, V = {v;:i = 1,2,3,..,.3mr} U {x;:i = 1,2,3,4}. A
collection of vertices from the graph are divided into the following groups to make the process of
creating edge labelling and determining vertex weight simpler:

a. setofverticeswithv;; i =1,3r+1,6r+1,9r+1,..,3m—-3)r+1
set of vertices with v; ; i = r,4r,7r,10r,...,(3m — 2)r
set of verticeswithv; ; i =r+ 1,4r +17r + 1,10r + 1,...,3m - 2)r + 1
set of vertices with v; ; i = 2r,5r,8r,11r, ..., 3m — Dr
set of vertices withv; ; i =2r + 1,5 + 1,8r + 1,11r + 1,..., Bm — Dr + 1
set of vertices with v; ; i = 3r,6r,9r,12r, ...,3mr
set of vertices with v; ; i = 3jr + 2,3jr +3,3jr +4,...3jr+ (r+1)and j =0,1,23,..,m—1
set of vertices withv; ; i =3jr + (r +2),3jr+ r +3),3jr+ (r+4), ...3jr+ 2r—1) and j =

0,1,2,3,..,m—1

1. setof verticeswithv;; i =3jr+ 2r +2),3jr+ (2r +3),3jr+ 2r +4),..,.3jr+ 3r—1) and j =

0,1,2,3,..,m—1
The set of edges E of the graph is defined, where sp(m,r,3)
E={xv:i=13r+1,6r+1,9r+1,..,3m—-3)r+1}u
{xvpii=r+1,4r+17r+ 1,10r +1,..,3m - 2)r + 1} U

R I
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{xgvi:i=2r+15r+18r+1,11r+1,..,Bm—-1r+ 1} U
{x,vi:i =r,4r,7r, 107, ...,(3m — 2)r} U

{xsv;:i = 2r,57,8r,11r, ..., B3m — D)r} u

{x4v;:i = 3r,6r,97r,12r,...,.3mr} u
{fvivip1:i=123,..,3mr,i #r,2r,3r,..,3mr}.

We obtained the lower bound of graph sp(mm,r, 3) by analysing the structure of the graph, then
the largest minimum label of & or the upper bound £ is analysed by labelling the vertices and edges
of the graph. By obtaining the biggest lower bound and the smallest upper bound, the total vertex
irregularity of the series parallel graph is determined.

3. Result and Discussion

The result of this research is about the total vertex irregularity value of the graph sp(m, r, 3) form > 4
and r = 2 given in the following theorem.
Theorem 1 Total vertex irregularity of the graph sp(m,r, 3) form > 4andr = 2 is

tvs(sp(m T, 3)) [M]

3mr+2

Proof. We will prove tvs (sp (m,r, 3)) [ ] Note that the degree of the smallest vertex of the graph

sp(m,r,3) is 2 and the number of vertices with the smallest degree, which is degree 2 on the graph
sp(m,r,3), is 3mr. To obtain optimal labelling, the weight of each vertex with degree 2 are labelled as
34,5, ..., 3mr + 2. Since the vertex weight is the sum of labels of 1 vertex and 2 edges which associated with

3mr+2

that vertex, the largest label is more or equal to [ ] The ceiling function is used because in irregular

total labelling of vertices, it is only allowed to label the graph with an integer. To guarantee this, the lower

bound is rounded up. Then it is evident that tvs(sp(m,7,3)) = [3mr+2]

3mr+2

Next, it will be proved that tvs (sp (m,, 3)) [ ] by showing the vertex irregular total k-labelling

of the graph sp(m, r, 3) for m natural numbers and m > 4, that is
1)  The vertex labelling of the graphs sp(m,r,3) form > 4and r > 2

HTZ ;fori =1 (mod 3)

a. A(vi)=[§]= % ;fori = 2 (mod 3)
é ;fori = 0 (mod 3)

6r—1;ifm=4
5r—2;ifm=5

b A1) =93, _3lifm =6
1 ;ifm>7

C. /1(362)=1
1 ;forr =1 (mod3)

d A(x3) =<2 ;forr=2(mod3)
1 ;forr =0 (mod3)
2r+2;ifm=4

e Alx) = { ;ifm =5

2) The edge labels of the graphs sp(m,r,3) form > 4 and r > 2
a. Fori=1,3r+1,6r+1,9r+1,..,3m—-3)r+1

d htep://dx.doi.org/10.30983/10483
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i+2
3
i+1

AQx1v;) = 1

i+3
3

;fori =1 (mod 3)
;fori = 2 (mod 3)

;fori = 0 (mod 3)

Fori=r,4r,7r,10r, ..., 3m — 2)r

i+2
3
i+4
3
i+3
‘3

A(vixs) = 1

;fori =1 (mod 3)
;fori = 2 (mod 3)

;fori =0 (mod 3)

Fori=r+1,4r+1,7r+1,..,Bm-2)r+1

i+2
3

i+1
3

i+3
3

A(xzv) =

;fori =1 (mod 3)
;fori = 2 (mod 3)

;fori =0 (mod 3)

For i = 2r,5r,8r,11r, ..., Bm — Dr

i+2
3
i+4

Awixs) = 1
i+3
3

Fori=2r+15r+1,8r+1,11r+1,..,3m—1Dr+1

i+2

-
+ w
[

Alxzvy) =

~.
+ w
w

w

;fori =1 (mod 3)

;fori =2 (mod 3)

;fori =0 (mod 3)

;fori =1 (mod 3)
;fori = 2 (mod 3)

;fori =0 (mod 3)

Fori = 3r,67,9r,12r,...,3mr

i+2

i+4
3

i+3
3

Alxavy) =

;fori =1 (mod 3)

;fori = 2 (mod 3)

;fori = 0 (mod 3)

Fori=r4r,7r,..,(3m — 2)r;
2r,57,8r,..,(3m — Dr;

3r,6r,9r,...,3mr
i+2

i+1
3

i+3
3

A;_qvy) =

;fori =1 (mod 3)
;fori = 2 (mod 3)

;fori =0 (mod 3)

Fori=13r+1,6r+1,..,3m-3)r+1;
r+1,4r+1,7r+1,..,(3m — 2)r+1;
2r+1,5r+1,8r+1,..,Bm—-1r+1

d htep://dx.doi.org/10.30983/10483
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i+2

3 ;fori =1 (mod 3)
i+4

Avviy) = 3 ;fori = 2 (mod 3)
i+3

3 ;fori =0 (mod 3)

i. Fori=3jr+23jr+3,3jr+4,..3jr+—-1)
3jr+ (r+2),3jr+ (r+3),3jr+ (r+4),...3r+2r—-1);
3jr+ (2r + 2),3jr + (2r + 3),3jr + (2r + 4), ...,3jr + (3r — 1);

i+2

3 ;fori =1 (mod 3)
i+1

A(i—1v;) =1 3 ;fori = 2 (mod 3)
i+3

- ;fori = 0 (mod 3)
i+2

3 ;fori =1 (mod 3)
i+4

AWVig1) = S 3 ;fori = 2 (mod 3)
i+3

3 ;fori =0 (mod 3)

According to the given labelling, the vertex weights v; for graph sp(m,r,3) where m = 4 and r > 2
are denoted by w(v;) which equals i + 2. The weight of the vertex v; ranges from 3 to 3mr + 2 as consecutive
integers, proving that each vertex weight v; is unique in the graphs sp(m,r,3) form = 4 andr > 2. Next
will be calculated the vertex weight x;, with i = 1,2,3,4, from the graph sp(m, r, 3), and it will be proven that

each vertex weight v;and each vertex weight x;in the series—parallel graph sp(m, r, 3)are distinct for m > 4
andr > 2.

1. Form=4andr=>2
wt(x;) =12r + 3

44r + 19
—3 forr = 1 (mod 3)
44r + 35

wt(x,) = —s forr = 2 (mod 3)
44r + 27
B — for r = 0 (mod 3)
52r + 35
E— forr =1 (mod 3)
52r + 22

wt(x3) =< —3 forr = 2 (mod 3)
52r 4+ 27
—3 forr = 0 (mod 3)

wt(x,) =12r+ 6
For m = 4, the vertex weights v; for i = 1,2,3, ...,3mr are consecutive integers from 3,4,5, ...,12r +
2. The following will show that
Wt (V) < WEt(x1) < wt(x,) < wt(x,) < wt(xs).
For r = 1(mod3) with r > 2, the inequality
Wt (V) < WEt(xg) < wt(x,) < wt(xy) < wt(xg)
holds because
44r +19 52r 4+ 35

12r+2<12r+3<12r+6< 3 < 3

For r = 2(mod3) with r > 2, the inequality
Wt (Vgmr) < WE(xq) < wt(xy) < wt(xy) < wt(xz)

d htep://dx.doi.org/10.30983/10483
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holds because
44r + 35 52r + 22

<
3 3

12r+2<12r+3<12r+6 <

For r = 0(mod3) with r > 2, the inequality
Wt (Vamr) < WE(xq) < wt(xy) < wt(x,y) < wt(xz)
holds because

44r + 27 < 52r + 27
3 3 '
These results show that every vertex weight in the graph sp(m,r, 3)for m = 4 is distinct.

12r+2<12r+3<12r+6 <

2. Form=5andr=>2
wt(x;) =15r+3

70r + 23
—3 forr =1 (mod 3)
70T + 43

wt(x,) =< — forr = 2 (mod 3)
70r + 33
—3 forr = 0 (mod 3)
80r + 43
B a— forr =1 (mod 3)
80r + 26

wt(x3) =< —3 forr = 2 (mod 3)
80r + 33
—3 forr = 0 (mod 3)

wt(x,) = 15r+ 6
For m = 5, the vertex weights v; for i = 1,2,3, ...,3mr are consecutive integers from 3,4,5, ...,157 +
2. The following will show that
Wt(V3mr) < Wt(x1) < wt(x,) < wt(x,) < wt(xs).
For r = 1(mod3) with r > 2, the inequality
Wt (V) < Wt(x;) < wt(x,) < wt(x,) < wt(xs)

holds because
70r + 23 80r +43

<
3 3

157+ 2<15r+3<15r+ 6 <

For r = 2(mod3) with r = 2, the inequality
Wt (V) < Wt(x;) < wt(x,) < wt(x,) < wt(xs)

holds because
70r + 43 80r + 26

<
3 3

157+ 2<15r+3<15r+ 6 <

For r = 0(mod3) with r > 2, the inequality
Wt (V3mr) < Wt(x;) < wt(xy) < wt(x,) < wt(xg)
holds because
70r +33 80r +33
3 < 3 '
These results show that every vertex weight in the graph sp(m,r, 3) for m = 5 is distinct.

1574+ 2<15r+3<15r+ 6 <

3. Form=6andr=>2
wt(x;) = 18r + 3

d htep://dx.doi.org/10.30983/10483
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102r + 27
—3 forr = 1 (mod 3)
102r 4+ 51
—s forr = 2 (mod 3)
102r + 39
—s forr = 0 (mod 3)
114r + 27
—s forr =1 (mod 3)
114r + 51
—3 forr = 2 (mod 3)
114r + 39
—s forr = 0 (mod 3)

wt(x,) =21r+7
For m = 6, the vertex weights v; for i = 1,2,3, ...,3mr are consecutive integers from 3,4,5, ...,187 +
2. The following will show that

Wt(V3mr) < Wt(xg) < wt(x,) < wt(x,) < wt(xz).

For r = 1(mod3) with r = 2, the inequality

holds because

Wt (V) < Wt(x;) < wt(xy) < wt(x,) < wt(xs)

102r + 27 < 114r + 51

18r+2<18r+3<2lr+7< 3 3

For r = 2(mod3) with r > 2, the inequality

holds because

Wt (V) < Wt(x;) < wt(x,) < wt(x,) < wt(xs)

102r +51 114r + 30

18r+2<18r+3<21r+7< 3 < 3

For r = 0(mod3) with r > 2, the inequality

holds because

Wt (V) < Wt(x;) < wt(x,) < wt(x,) < wt(xg)

102r + 39 114r + 39

18r+2<18r+3<21r+7< 3 < 3

These results show that every vertex weight in the graph sp(m,r, 3) for m = 6 is distinct.

4, Form=7andr =2
wt(x;) =21r + 8

wt(xy) =

wt(x3) = 1

1407 + 31
—3 forr = 1 (mod 3)
140r + 59
—s forr = 2 (mod 3)
140r

3 + 15 forr = 0 (mod 3)
(154r + 59
—s forr =1 (mod 3)
154r + 34
—3 forr = 2 (mod 3)
154r

3 + 15 forr = 0 (mod 3)

wt(x,) =28r +8
For m = 7, the vertex weights v; for i = 1,2,3, ...,3mr are consecutive integers from 3,4,5, ...,21r +
2. The following will show that

Wt(Vgmr) < WE(xg) < wt(xy) < wt(xy) < wt(xz).

For r = 1(mod3) with r > 2, the inequality
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Wt (Vgmr) < Wt(xy) < wt(xy) < wt(xy) < wt(xs)
holds because
140r + 31 154r + 59

20r+2<21r+8<28r+8< 3 < 3

For r = 2(mod3) with r > 2, the inequality
Wt (Vgmr) < Wt(xy) < wt(xy) < wt(xy) < wt(xs)
holds because
140r + 59 < 154r + 34
3 3 '

2Ir+2<21r+8<28r+8<

For r = 0(mod3) with r > 2, the inequality
Wt (Vgmr) < Wt(xy) < wt(xy) < wt(xy) < wt(xs)
holds because

140r 154r

21r+2<21r+8<28r+8< +15<?+15.

These results show that every vertex weight in the graph sp(m,r,3) for m = 7 is distinct.

5. Form=8andr>2
wt(x;) =28r+9

184r + 35
—s forr = 1 (mod 3)
184r + 67
wt(x,) = < —3 forr = 2 (mod 3)
184r
3 + 17 forr = 0 (mod 3)
200r + 67
—s forr =1 (mod 3)
2007 + 38
wt(x3) = —3 forr = 2 (mod 3)
200r
3 + 17 forr =0 (mod 3)

wt(x,) =36r +9
For m = 8, the vertex weights v; for i = 1,2,3, ...,3mrare consecutive integers from 3,4,5, ...,24r +
2. The following will show that
Wt (V) < WEt(x1) < wt(x,) < wt(xy) < wt(xs).
For r = 1(mod3) with r > 2, the inequality
Wt (Vsmr) < Wt(x;) < wt(x,) < wt(xy) < wt(xg)
holds because
184r + 35 < 2007 + 67

2dr +2<28r+9<36r +9 < 3 3

For r = 2(mod3) with r > 2, the inequality

Wt (Vzmr) < Wt(x;) < wt(x,) < wt(xy) < wt(xg)
holds because
184r + 67 < 2007 + 38

2dr +2<28r+9<36r +9 < 3 3

For r = 0(mod3) with r > 2, the inequality
Wt (V3mr) < Wt(x;) < wt(xy) < wt(xy) < wt(xg)
holds because

184r 2007
24-r+2<28T+9<36T+9<T+17<T+17.

These results show that every vertex weight in the graph sp(m,r,3) for m = 8 is distinct.
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6. Form>9andr =2
m? —mr+2m+2

wt(x;) = 2
3m?r —mr +4m + 3
3 forr =1 (mod 3)
3m?r —mr +8m+ 3
wt(x,) = < 3 for r = 2 (mod 3)
3m?r —mr + 6m+3
3 forr = 0 (mod 3)
3m?r +mr +8m+ 3
3 forr =1 (mod 3)
3m?r+mr+4m+6
wt(x3) = < 3 for r = 2 (mod 3)
3m?r + mr + 6m+ 3
L 3 forr = 0 (mod 3)
m?—mr+2m+2
wt(x,) = 2

For m = 9, the vertex weights v; for i = 1,2,3, ...,3mr are consecutive integers from
3,4,5,...,27r + 2.
The following will be shown:
Wt(V3mr) < Wt(x1) < wt(x,) < wt(x,) < wt(xs).

Case 1:r = 1(mod3) withr > 2

We will prove that
m’r—mr+2m+2 m*r+mr+2m+2 3mPr—mr+4m+3
3mr+2< < <
2 2 3
3m?r + mr +8m+3
3 .
The inequalities
mzr—mr+2m+2<m2r+mr+2m+2 3m2r—mr+4m+3<3m2r+mr+8m+3
2 2 ’ 3 3

are trivially true because the right-hand sides are larger than the left-hand sides.
Thus, the nontrivial steps requiring proof are:
mir—mr+2m+2 m*r+mr+2m+2 3mir—-mr+4m+3

3 2 < , < ,
mr + > > 3

which will be established using mathematical induction.
Induction Proof'1

To prove:
m?r —mr +2m+ 2
3mr+2< > for m = 9.
Let
m?r —mr +2m+ 2
p(m):3mr +2 < >
Base Step

Because m = 9, we check m = 9:
72r+20 9%r—9r+2-9+2 mir—-mr+2m+2
2 2 h 2 '

3Imr+2=27r+2<

Thus, p(9) is true.
Induction Step
Assume p(k)holds:
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k?r —kr +2k + 2

3kr +2 <
" 2

We must prove:
k*r + kr 4+ 2k + 4

2
Adding 37 to both sides of the induction hypothesis yields:

k?r —kr+6r +2k +2
5 .

3kr+3r+2<

3kr+3r+2<

Since

2kr —6r + 2

— =0,

2
we have
kzr—kr+6r+2k+2<k2r+kr+2k+4
2 2 '

Thus, the inequality for k + 1 holds and the induction is complete.

Induction Proof 2

To prove:
mr+mr+2m+2 3m*r—-mr+4m+3
< for m > 9.
2 3
Let
m’r+mr+2m+2 3m*r—mr+4m+3
p(m): <
2 3
Base Step
Form = 9:
90r + 20 < 234r + 39
2 3 '
So p(9) holds.
Induction Step
Assume

k2r+kr+2k+2<3k2r—kr+4k+3
2 3 ’

We need to prove:

k2r+3kr+2r+2k+4<3k2r+5kr+2r+4k+7

2 3
Adding kr + r + 1 to both sides of the assumption gives the desired result, completing the induction.

Case 2:r = 2(mod3),r = 2
The inequalities to be shown are:
mr—mr+2m+2 mPr+mr+2m+2 3m*ir—-mr+8m+3

3mr+2< > < > < 3
3m’r+mr+4m+6
3
The inequalities
mr—-mr+2m+2 mir+mr+2m+2 3m*r—-mr+8m+3 3mir+mr+4m+6
2 < 2 ' 3 < 3

are clearly true, since the right-hand side is larger than the left-hand side.
However, the inequalities
m?r—mr+2m+2 m*r+mr+2m+2 3mir—mr+8m+3

3 2< )
mr + 2 > < 3
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require proof using mathematical induction.
Induction Proof'1

To prove:
m?r —mr +2m + 2
3mr+2< > for m = 9.
Let
m?r —mr +2m+ 2
p(m):3mr+2< >
Base Case

Sincem > 9, we check m = 9:
72r+20 9%r—9r+2-94+2 m?’r—-mr+2m+2
3mr+2=27r+2< = = .
2 2 2
Thus, p(9) holds.
Induction Step

Assume p(k) holds:

k?r —kr +2k + 2

3kr +2 <
" 2

We must prove:
k*r + kr + 2k + 4

3kr+3r+2< >

Adding 37 to both sides of the induction hypothesis gives:
k?r — kr + 6r + 2k + 2

3kr+3r+2< >

Since

2kr —6r + 2

—_— 2 ,

2
we obtain:
kzr—kr+6r+2k+2<k2r+kr+2k+4
2 2 '

Thus, the inequality for k + 1holds, and the induction is complete.

Induction Proof 2

To prove:
m’r+mr+2m+2 3m*r—mr+8m+3
< for m = 9.
2 3
Let
mr4+mr+2m+2 3m’r—mr+8m+3
p(m): <
2 3
Base Case
Form = 9:
mr+mr+2m+2 90r+20 234r+75 3-9%r—-9r+8-9+3 3mir—-mr+8m+3
2 2 3 3 3
Thus, p(9) is true.
Induction Step
Assume p(k) holds:

kK’r+kr+2k+2 3k*x—kr+8k+3
2 < 3 '

We must prove:
k2r+3kr+2r+2k+4<3k2r+5kr+2r+8k+11

2 3
Adding kr + r + 1 to both sides of the induction hypothesis yields:
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k2r+3kr+2r+2k+4<3k2r+2kr+3r+4k+6
2 3 '

Since
3kr —r+5
—FF— =0,
3
we obtain:

3k2r+2kr+3r+4k+6< 3k?r 4+ 5kr + 2r + 8k + 11
3 3 '
Thus, the inequality for k + 1 holds, completing the induction.

Case 3:r = 0(mod3),r > 2
The inequalities to be shown are:
mr—-mr+2m+2 mPr+mr+2m+2 3m*r—mr+8m+3

3mr+2< > < > < 3
3m’r+mr+4m+6
3 )
The inequalities
mzr—mr+2m+2<m2r+mr+2m+2 3m2r—mr+8m+3<3m2r+mr+4m+6
2 2 ’ 3 3

are clearly true, since the right-hand side 1is greater than the left-hand side.
The inequalities that require proof are
m*r—mr+2m+2 m*r+mr+2m+2 3m’r—mr+8m+3

2 )
3mr+2< > , > < 3

and these will be proven using mathematical induction.
Induction Proof'1

To prove:
m?r—mr+2m+ 2
3mr+2< > for m > 9.
Let
mir—mr+2m+2
p(m):3mr +2 < >
Base Case

Sincem > 9, checkm = 9:
72r +20  9*r—9r+2-9+2 mir—mr+2m+2
2 2 h 2 '

3mr+2=27r+2<
Thus, p(9) holds.

Induction Step
Assume p(k) holds:
k*r —kr + 2k +2
3kr+2< > .
We must prove:
kK2r+kr+2k+4
3kr+3r+2< .

2
Adding 37 to both sides yields:

k?r —kr+6r +2k+2

3kr+3r+2< >

Because
2kr — 61 + 2
- 0>

2 = )
we obtain:

d htep://dx.doi.org/10.30983/10483

-172 -


http://dx.doi.org/10.30983/10483

Marzuki et al Vol. 5 No. 2, Juli-Desember 2025 pp. 160-175

kzr—kr+6r+2k+2<k2r+kr+2k+4

2 2
Thus, p(k + 1) holds, completing the induction.

Induction Proof 2

To prove:
mr+mr+2m+2 3m*r—mr+6m+3
< for m > 9.
2 3
Let
m*r+mr+2m+2 3m’r—mr+6m+3
p(m): > < 3
Base Case
Form = 9:
m’r+mr+2m+2 90r+20 234r+75 3-9%r—9r+8-94+3 3mir—-mr+8m+3
2 2 3 3 3
Thus, p(9) is true.
Induction Step
Assume p(k)holds:

kr+kr+2k+2 3k’ —kr+6k+3
5 < 3 )

We must prove:

k2r+3kr+2r+2k+4<3k2r+5kr+2r+6k+9

2 3
Adding kr + r + 1to both sides of the induction hypothesis gives:

k2r+3kr+2r+2k+4<3k2r+2kr+3r+6k+6
2 3 '

Since

3kr —r+3

— =0,

3
it follows that:
3k2r+2kr+3r+6k+6< 3k?r + 5kr +2r + 6k +9
3 3 ’

Thus, the inequality for k + 1 holds.

The calculation of the vertex weight shows that w(vs,,,) < w(x;) < w(x,) < w(x,) < w(xs), indicating
that each vertex in graph sp(m,r, 3) has a unique weight. Therefore, it can be deduced that in the vertex
irregular total labelling of the graph sp(m,r, 3), each vertex has a distinct weight and tvs(sp(m,r,3)) <
[(3mr + 2)/3]. From the above explanation, we can conclude that tvs(sp(m,r,3)) = [(3mr + 2)/3] and
tvs(sp(m,r,3)) < [(3mr + 2)/3], thus proving that tvs(sp(m,r,3)) = [(3mr + 2)/3].

As an illustration of the above theorem, an example is given for labelling the irregular totals of vertices
for the graphs sp(m,r,3) form = 13 and r = 2.
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Figure 2. Graph illustration sp(13,2,3)

4. Conclusion

3mr+2

3

vertices on a parallel series graph sp(m,r,3) form = 4 and r > 2 and an irregular total [4m3;+2] -labelling of

Based on the description above, it can be concluded that there is an irregular total [ ]-labelling of

vertices on a parallel series graph sp(m, r,4) form > 5 andr > 1. Hence, it is proven that tvs(sp(m,r, 3)) =
[3mr+ 2
3

]. As the lower bound has been obtained, and the upper bound of tvs(sp(m, T, 3)), so that

tvs(sp(m,7,3)) < [3"13;”] .

References

[1] E. Kay, J. A. Bondy, and U. S. R. Murty, “Graph Theory with Applications,” Oper. Res. Q., vol. 28, no.
1, p. 237, 1977, doi: 10.2307/3008805.

[2] R. W. Putra and Y. Susanti, “On total edge irregularity strength of centralized uniform theta
graphs,” AKCE Int. J. Graphs Comb., vol. 15, no. 1, pp. 7-13, 2018, doi: 10.1016/j.akcej.2018.02.002.

[3] J. A. Gallian, “A Dynamic Survey of Graph Labeling,” Electron. J. Comb., 2018.

[4] R. Munir, “Matematika Disktrit,” Inform. Bandung, pp. 281-308, 2010.

[5] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, and F. Saba, “Irregular
Networks,” Congr. Numer., vol. 64, pp. 197-210, 1988.

[6] Z. B. Tomi, M. F. Akbar, F. F. Janeva, G. H. Medika, and K. Kunci, “Pelabelan Vertex Graceful pada
Graf- (5, 8),” vol. 3, no. 1, pp. 63-76, 2025.

[7] G. H. Medika and others, “Pelabelan Vertex-Graceful pada Graf-(5,7),” Lattice J. Math., 2024.

[8] G. H. Medika, A. Budiman, and R. Yolanda, “Pelabelan Graceful Titik pada Graf-(7,8),” J. Math.
Struct., 2025.

[9] M. Baca, S. Jendrol’, M. Miller, and J. Ryan, “On irregular total labellings,” Discrete Math., vol. 307,
no. 11-12, pp. 1378-1388, 2007, doi: 10.1016/j.disc.2005.11.075.

d http://dx.doi.org/10.30983/10483

-174 -


http://dx.doi.org/10.30983/10483

Marzuki et al Vol. 5 No. 2, Juli-Desember 2025 pp. 160-175

N. Hinding, D. Firmayasari, H. Basir, M. Ba”, and A. Semani’, “On irregularity strength of diamond
network,” AKCE Int. J. Graphs Comb., vol. 15, pp. 291-297, 2018, doi: 10.1016/j.akcej.2017.10.003.
T. Winarsih and D. Indriati, “Total edge irregularity strength of (n,t)-kite graph,” J. Phys. Conf. Ser.,
vol. 1008, no. 1, pp. 449-456, 2018, doi: 10.1088/1742-6596/1008/1/012049.

R. Ramdani, “On the total vertex irregularity strength of comb product of two cycles and two stars,”
Indones. J. Comb., vol. 3, no. 2, pp. 79-94, 2019, doi: 10.19184/ijc.2019.3.2.2.

C. C. Marzuki, “Nilai Total Ketakteraturan Sisi dari m-copy Graf Lintasan,” J. Sains Mat. dan Stat.,
vol. 5, no. 1, pp. 90-98, 2019.

I. Rosyida and D. Indriati, “Determining Total Vertex Irregularity Strength of Tr(4,1) Tadpole Chain
Graph and its Computation,” Procedia Comput. Sci., vol. 157, pp. 699-706, 2019, doi:
10.1016/j.procs.2019.09.152.

Y. Susanti, Y. Indah, and H. Khotimah, “On Total Edge Irregularity Strength of Staircase Graphs
and Related Graphs,” vol. 15, no. 1, pp. 1-13, 2020, doi: 10.21859/IJMSI.15.1.1.

N. Hinding, H. K. Kim, N. Sunusi, and R. Mise, “On Total Vertex Irregularity Strength of Hexagonal
Cluster Graphs,” Int. J. Math. Math. Sci., vol. 2021, 2021, doi: 10.1155/2021/2743858.

S. T. Rajasingh, Indra, Arockiamary, “Total Edge Irregularity Strength of Series Parallel Graphs,”
Int. J. Pure Appl. Math., vol. 99, no. 1, pp. 11-21, 2015

C. C. Marzuki, L. Laraza, and F. Aryani, “NILAI TOTAL KETAKTERATURAN TITIK PADA GRAF
SERI PARALEL sp(m,1,3),” J. Sains Mat. dan Stat., vol. 6, no. 2, p. 113, 2020, doi:
10.24014/jsms.v6i2.10559.

H. Riskawati, Nurdin, “Nilai ketidakteraturan pada graf series parallel,” vol. 1, no. 1, pp. 5-10, 2019.

d http://dx.doi.org/10.30983/10483

-175 -


http://dx.doi.org/10.30983/10483

