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This paper addresses the problem of determining the total vertex irregularity strength of the series-parallel 
graph family 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 ≥  4 and 𝑟 ≥  2. The total vertex irregularity strength 𝑡𝑣𝑠(𝐺) of a 
graph 𝐺 is defined as the smallest integer 𝑘 such that there exists a total k-labelling 𝑓: 𝑉(𝐺)  ∪  𝐸(𝐺)  →
 {1, 2, . . . , 𝑘} where the vertex weights 𝑤(𝑣)  =  𝑓(𝑣)  + ∑ 𝑓(𝑣𝑥)𝑥𝜖𝑁(𝑣)  are distinct for each vertex. 

The graph family 𝑠𝑝(𝑚, 𝑟, 3) is generated through repeated series and parallel compositions, with 
parameters 𝑚, 𝑟, and a fixed structural parameter 3. To solve this problem, we construct an explicit total 
labelling that ensures distinct vertex weights, providing an upper bound for 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)). 
Additionally, we perform a structural analysis of the graph, which yields a matching lower bound. The 
results demonstrate that the total vertex irregularity strength of 𝑠𝑝(𝑚, 𝑟, 3) is given by 
𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3))  =  ⌈(3𝑚𝑟 +  2) / 2⌉. This work contributes a new insight into the 
characterization of the total vertex irregularity strength for this specific class of graphs, providing both 
upper and lower bounds for 𝑠𝑝(𝑚, 𝑟, 3). 
 
Penelitian ini membahas permasalahan dalam menentukan nilai total ketakteraturan titik pada keluarga 
graf seri-paralel 𝑠𝑝(𝑚, 𝑟, 3) untuk 𝑚 ≥  4 dan 𝑟 ≥  2. Nilai total ketakteraturan titik 𝑡𝑣𝑠(𝐺) untuk 
suatu graf 𝐺 didefinisikan sebagai nilai minimum 𝑘 sehingga terdapat pelabelan total 𝑓: 𝑉(𝐺)  ∪
 𝐸(𝐺)  →  {1, 2, . . . , 𝑘} dengan bobot titik 𝑤(𝑣)  =  𝑓(𝑣)  +  ∑ 𝑓(𝑣𝑥)𝑥𝜖𝑁(𝑣)  yang berbeda untuk 

setiap titik. Keluarga graf 𝑠𝑝(𝑚, 𝑟, 3) dibangun melalui komposisi seri dan paralel secara berulang, 
dengan parameter 𝑚, 𝑟, dan parameter struktur tetap 3. Untuk menyelesaikan masalah ini, kami 
mengonstruksi pelabelan total eksplisit yang memastikan bobot titik saling berbeda, sehingga 
menghasilkan batas atas untuk 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)). Selain itu, kami melakukan analisis struktur graf 
untuk memperoleh batas bawah yang sesuai. Hasil penelitian ini menunjukkan bahwa total vertex 
irregularity strength untuk 𝑠𝑝(𝑚, 𝑟, 3) diberikan oleh 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3))  =  ⌈(3𝑚𝑟 +  2) / 2⌉. 
Penelitian ini memberikan kontribusi berupa wawasan baru dalam karakterisasi nilai total 
ketakteraturan titik untuk kelas graf ini, dengan menyediakan batas atas dan batas bawah untuk 
𝑠𝑝(𝑚, 𝑟, 3). 
 
 
 

©2025 by the authors. Submitted for possible open access publication under the terms 
and conditions of the  

Creative Commons Attribution-ShareAlike 4.0 International License-(CC-BY-SA) 
(https://creativecommons.org/licenses/by-sa/4.0/) 

Kata Kunci 
Series parallel graph 
Total vertex irregularity strength 
Total vertex irregular labelling 
 

Korespondensi 
E-mail: corry@uin-suska.ac.id* 

 

 
1. Introduction 

 

Graphs, which consist of multiple vertices and edges connecting them, can be used to model a 

wide range of real-world situations. It is important to note that a graph represents whether a pair 

of vertices is connected by an edge. The definition of graphs arises from the mathematical 

abstraction of such conditions [1]. In graph labelling, a labelling function is defined as a mapping 

with an explicit domain and codomain. Specifically, for a graph 𝐺 = (𝑉, 𝐸), a (vertex) labelling is a 

function 𝑓: 𝑉 → ℕ, an edge labelling is a function 𝑓: 𝐸 → ℕ, and a total labelling is a function 𝑓: 𝑉 ∪

𝐸 → ℕ (or equivalently 𝑓: 𝑉 ∪ 𝐸 → {1,2, … , 𝑘} for some integer 𝑘) [2]. Graph labeling has been used in 

many applications like communication network addressing, software testing, information security, 

technology and sports tournament scheduling, and coding theory problems including the design of 

good radar location codes, missile guidance codes, and convolution codes, secret sharing methods, 

and models for constraint programming across finite domains, labeled graphs are helpful models 

[3].  

https://creativecommons.org/licenses/by-sa/4.0/
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Graph 𝐺 is characterized as a set match, composed with the notation 𝐺 = (𝑉, 𝐸), where 𝑉 is a 

non-empty set of points (vertices or nodes), and 𝐸 is the set of lines (edges or arcs) that join two 

vertices. Discrete items and the relationships between them are represented by graphs [4]. Graph 

labelling is the process of assigning labels, which are often represented by integers, to the edges 

and/or vertices of a graph in the mathematical field of graph theory [3]. 

The idea of 𝑘-labelling, which is irregular labelling on a graph 𝐺 defined as a mapping of a set 

of edge 𝑒 of 𝐺 to an integer {1,2, . . . , 𝑘} such that each vertex 𝑣 has a distinct weight, was first 

described in[5]. The weighted of the vertex 𝑣, denoted by 𝑤(𝑣), is the sum of the labels 𝑣 and the 

labels of edges linked with 𝑣. The weighted edge 𝑒, denoted as 𝑤(𝑒), is the sum of labels 𝑒 and labels 

for all vertices connected to 𝑒. Several studies related to vertices include graceful vertex labeling on 

graphs (5,8)[6], graceful vertex labeling on graphs (5,7)[7]  and graceful vertex labeling on graphs 

(7,8)[8]. 

The concept of examining irregular total 𝑘-labelling was presented in [9]. A vertex irregular 

total 𝑘-labelling of 𝐺 is defined as follows: for every two distinct vertices 𝑥 and 𝑦 of 𝐺, there is 𝑤(𝑥) ≠

𝑤(𝑦). Similarly, an edge irregular total 𝑘-labelling of graph 𝐺 is defined as follows: for every two 

distinct edges 𝑒 and 𝑓 of graph 𝐺, there is 𝑤(𝑒) ≠ 𝑤(𝑓). The graph 𝐺's total edge irregularity 

strength, represented by 𝑡𝑒𝑠(𝐺), is the lowest 𝑘 for which the graph has an edge irregular total 𝑘-

labelling. In a similar vein, we define 𝑡𝑣𝑠(𝐺), the total vertex irregularity strength of 𝐺, as the 

lowest 𝑘 for which a vertex irregular total 𝑘-labelling of 𝐺 exists. 

The study of irregular total labelling in a graph continues to grow. In a study [10], the 

irregularity strength of the Diamond graph Brn was examined, where, for n ≥ 3, 𝑡𝑒𝑠(𝐵𝑟4) = ⌈
5𝑛−3

3
⌉ 

and 𝑡𝑣𝑠(𝐵𝑟4) = ⌈
𝑛+1

3
⌉ . The total edge irregularity strength of the Kite graph (n,t) was then presented 

in[11], which demonstrated that for n ≥ 3 and t ≥ 1, showed 𝑡𝑒𝑠(𝑛, 𝑡) = ⌈
𝑛+𝑡+2

3
⌉. The total edge 

irregularity strength of centralized uniform theta graphs, θ*(n;m;p), was published later in [2] and 

yielded the following conclusion for n ≥ 3, m ≥ 1, and p ≥ 3: 𝑡𝑒𝑠(𝜃 ∗ (𝑛;𝑚; 𝑝)) = ⌈
(𝑛(𝑚+1)𝑝+2)

3
⌉⌉. Then, 

according to study in [12], the total irregularity strength of the comb product of a two-cycle graph 𝐶𝑚 and 

𝐶𝑛 is 𝑡𝑣𝑠(𝐶𝑚 ⊳𝑜 𝐶𝑛) = ⌈
𝑚(𝑛−1)+2

3
⌉ for 𝑚 ≥ 3 and 𝑛 ≥ 3, whereas the total irregularity value of a two-star 

graph 𝑆𝑚 and 𝑆𝑛 is 𝑡𝑣𝑠(𝑆𝑚 ⊳𝑜 𝑆𝑛) = ⌈
𝑛(𝑚+1)+1

2
⌉ for 𝑚 ≥ 2 and 𝑛 ≥ 2. The total irregularity edge strength of 

the m-copy of the path graph 𝑃𝑛 is 𝑡𝑒𝑠(𝑚𝑃𝑛) = ⌈
(𝑛−1)𝑚+2

3
⌉, for 𝑚 ≥ 2 and 𝑛 ≥ 6, were presented in [13]. 

One of the results of the total irregularity strength of the tadpole chain graph 𝑇𝑟(4,1) was 

𝑡𝑣𝑠(𝑇𝑟(4,1)) = ⌈
4𝑟+2

5
⌉ for r ≥ 3. This was demonstrated in[14]. The total edge irregularity strength for 

the ladder graph SCn, double ladder graph DSCn with 𝑡𝑒𝑠(𝐷𝑆𝐶𝑛) = ⌈
2𝑛2+3𝑛+1

3
⌉, mirror ladder graph 

MSCn, and double ladder graph DSCn, with 𝑡𝑒𝑠(𝑀𝑆𝐶𝑛) = ⌈
𝑛(2𝑛+5)+2

3
⌉, was determined by study [15]. 

In his study [16], Hinding looks at a hexagon cluster network 𝐻𝐶(𝑛)'s total vertex irregularity 

strength and finds the values for 𝑡𝑣𝑠(𝐻𝐶(𝑛)) = (
3𝑛2+1

2
) 𝑛 ≥ 2. 

Some attention was also paid to the total edge irregularity strength of parallel series graphs. A 
series parallel graph 𝑠𝑝(𝑚, 𝑟, 𝑙) has an overall edge irregularity value of [17], which can be found by 

writing 𝑡𝑒𝑠(𝑠𝑝(𝑚, 𝑟, 𝑙)) = ⌈
𝑙𝑚(𝑟+1)+2

3
⌉ for r ≥ 1. This is one of the writings by Winarsih. The total 

irregularity vertex on a series parallel graph has been determined by Marzuki, et. al. [18] and 
Riskawati [19] in their respective publications. For 𝑚 ≥  4 on the graph 𝑠𝑝(𝑚, 1,3), the value is 

𝑡𝑣𝑠(𝑠𝑝(𝑚, 1,3)) = ⌈
3𝑚+2

3
⌉, and for 𝑚 ≥  3 and r ≥ 3, the value on the graph 𝑠𝑝(𝑚, 𝑟, 2) is 

𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 2)) = ⌈
2𝑚𝑟+2

3
⌉. The overall vertex irregularity strength of a parallel series graph was 

found in those studies to be 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 ≥  4 and r ≥ 2. 

http://dx.doi.org/10.30983/10483
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2. Methods 

In this paper, we consider the finite undirected graph 𝐺 without loops and multiple edges with 

vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). The degree of a vertex 𝑥 is the number of edges that have 𝑥 as 

an endpoint, and the set of neighbours of 𝑥 is denoted by 𝑁(𝑥). If the domain of the labelling function 

𝑓(𝑥) is the vertex set or the edge set, the labelling is called, respectively, vertex labelling or edge 

labelling. If the domain is 𝑉(𝐺)⋃ 𝐸(𝐺), then we call the labelling a total labelling. 

Regard to a total 𝑘−labelling of G, that is, 𝑓: 𝑉(𝐺)⋃ 𝐸(𝐺)  ⟶ {1, 2, 3,· · ·, 𝑘}. The associated vertex 

weight of a vertex 𝑥 ∈  𝑉(𝐺) under a total 𝑘−labelling 𝑓 is defined as 𝑤(𝑥) = 𝑓(𝑥) + ∑ 𝑓(𝑥𝑣)𝑣𝜖𝑁(𝑥) . A 

total 𝑘−labelling 𝑓 is defined to be a vertex irregular total 𝑘−labelling of 𝐺 if for every two different 

vertices 𝑥 and 𝑦 of 𝐺, 𝑤𝑡(𝑥)  ≠  𝑤𝑡(𝑦). The minimum positive integer 𝑘 for which 𝐺 has a vertex 

irregular total 𝑘−labelling is called the total vertex irregularity strength of 𝐺, denoted by 𝑡𝑣𝑠(𝐺).  

 Assume that the graph 𝐺 =  (𝑉, 𝐸) consists of a set of edges connecting a pair of vertices (𝐸) to 

a non-empty set of vertices (𝑉). If a graph is made up of a series composition of three uniform theta 

graphs, with m representing each theta graph's longitude and 𝑟 denoting the number of degree 2 

vertices that cross each longitude, it is referred to as a parallel series graph 𝑠𝑝(𝑚, 𝑟, 3). Illustration 

of graph 𝑠𝑝(𝑚, 𝑟, 3) is given in Figure 1 below. 

 
Figure 1. Graph illustration 𝒔𝒑(𝒎, 𝒓, 𝟑) 

 

The graph 𝑠𝑝(𝑚, 𝑟, 3) has a defined set of vertices, 𝑉 = {𝑣𝑖 : 𝑖 = 1,2,3, … ,3𝑚𝑟} ∪ {𝑥𝑖 : 𝑖 = 1,2,3,4}.  A 

collection of vertices from the graph are divided into the following groups to make the process of 

creating edge labelling and determining vertex weight simpler:  

a. set of vertices with 𝑣𝑖  ;  𝑖 = 1, 3𝑟 + 1, 6𝑟 + 1, 9𝑟 + 1,… , (3𝑚 − 3)𝑟 + 1 

b. set of vertices with 𝑣𝑖  ;  𝑖 = 𝑟, 4𝑟, 7𝑟, 10𝑟, … , (3𝑚 − 2)𝑟 

c. set of vertices with 𝑣𝑖  ;  𝑖 = 𝑟 + 1, 4𝑟 + 17𝑟 + 1,10𝑟 + 1,… , (3𝑚 − 2)𝑟 + 1 

d. set of vertices with 𝑣𝑖  ;  𝑖 = 2𝑟, 5𝑟, 8𝑟, 11𝑟, … , (3𝑚 − 1)𝑟 

e. set of vertices with 𝑣𝑖  ;  𝑖 = 2𝑟 + 1,5𝑟 + 1,8𝑟 + 1,11𝑟 + 1,… , (3𝑚 − 1)𝑟 + 1 

f. set of vertices with 𝑣𝑖  ;  𝑖 = 3𝑟, 6𝑟, 9𝑟, 12𝑟, … ,3𝑚𝑟 

g. set of vertices with 𝑣𝑖  ;  𝑖 = 3𝑗𝑟 + 2,3𝑗𝑟 + 3,3𝑗𝑟 + 4,… ,3𝑗𝑟 + (𝑟 + 1) and 𝑗 = 0,1,2,3, … ,𝑚 − 1 

h. set of vertices with 𝑣𝑖  ;  𝑖 = 3𝑗𝑟 + (𝑟 + 2), 3𝑗𝑟 + (𝑟 + 3), 3𝑗𝑟 + (𝑟 + 4), … ,3𝑗𝑟 + (2𝑟 − 1) and 𝑗 =

0,1,2,3, … ,𝑚 − 1 

i. set of vertices with 𝑣𝑖  ;  𝑖 = 3𝑗𝑟 + (2𝑟 + 2), 3𝑗𝑟 + (2𝑟 + 3), 3𝑗𝑟 + (2𝑟 + 4), … ,3𝑗𝑟 + (3𝑟 − 1) and 𝑗 =

0,1,2,3, … ,𝑚 − 1 

The set of edges E of the graph is defined, where   𝑠𝑝(𝑚, 𝑟, 3) 

   𝐸 = {𝑥1𝑣𝑖: 𝑖 = 1, 3𝑟 + 1, 6𝑟 + 1, 9𝑟 + 1,… , (3𝑚 − 3)𝑟 + 1} ∪ 

{𝑥2𝑣𝑖: 𝑖 = 𝑟 + 1, 4𝑟 + 17𝑟 + 1,10𝑟 + 1,… , (3𝑚 − 2)𝑟 + 1} ∪ 

𝑣1
 

 

𝑣3𝑟+1
 

 

𝑣6𝑟+1
 

 

 

 

𝑣(3𝑚−3)𝑟+1
 

 

 

𝑣2
 

 

 

𝑣3𝑟+2
 

 

 

   𝑣6𝑟+2
 

 

 

 

𝑣(3𝑚−3)𝑟+2
 

 

𝑣3
 

 

 

𝑣3𝑟+3
 

 

 

𝑣6𝑟+3
 

 

 

 

 

𝑣(3𝑚−3)𝑟+3
 

 

𝑣𝑟
 

 

𝑣4𝑟
 

𝑣7𝑟
 

 

 

 

𝑣(3𝑚−3)𝑟
 

 

𝑣𝑟+1
 

 

𝑣4𝑟+1
 

𝑣7𝑟+1
 

 

 

 

𝑣(3𝑚−2)𝑟+1
 

 

 

𝑣𝑟+2
 

 

 

𝑣4𝑟+2
 

 

 

𝑣7𝑟+2 

 

 

 

𝑣(3𝑚−2)𝑟+2
 

 

 

𝑣𝑟+3
 

 

 

𝑣4𝑟+3 

 

 

𝑣7𝑟+3
 

 
 

 

𝑣(3𝑚−2)𝑟+3
 

 

 

𝑣2𝑟
 

 

𝑣5𝑟 

 

𝑣8𝑟
 

 

 

 

𝑣(3𝑚−1)𝑟
 

 

 

 

𝑣2𝑟+1
 

 

𝑣5𝑟+1
 

𝑣8𝑟+1
 

 

 

 

𝑣(3𝑚−1)𝑟+1
 

 

 

𝑣2𝑟+2
 

 

 

𝑣5𝑟+2 

 

 

𝑣8𝑟+2
 

 

 

 

𝑣(3𝑚−1)𝑟+2
 

𝑣2𝑟+3
 

 

 

𝑣5𝑟+3
 

 

 

𝑣8𝑟+3
 

 

 

 

 

𝑣(3𝑚−1)𝑟+3
 

 

 

 

𝑣3𝑟
 

 

𝑣6𝑟
 

 

𝑣9𝑟
 

 

 

 

𝑣3𝑚𝑟
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{𝑥3𝑣𝑖: 𝑖 = 2𝑟 + 1,5𝑟 + 1,8𝑟 + 1,11𝑟 + 1,… , (3𝑚 − 1)𝑟 + 1} ∪ 

{𝑥2𝑣𝑖: 𝑖 = 𝑟, 4𝑟, 7𝑟, 10𝑟, … , (3𝑚 − 2)𝑟} ∪ 

{𝑥3𝑣𝑖: 𝑖 = 2𝑟, 5𝑟, 8𝑟, 11𝑟, … , (3𝑚 − 1)𝑟} ∪ 

{𝑥4𝑣𝑖: 𝑖 = 3𝑟, 6𝑟, 9𝑟, 12𝑟, … ,3𝑚𝑟} ∪ 

{𝑣𝑖𝑣𝑖+1: 𝑖 = 1,2,3, . . ,3𝑚𝑟, 𝑖 ≠ 𝑟, 2𝑟, 3𝑟, … ,3𝑚𝑟}. 

We obtained the lower bound of graph 𝑠𝑝(𝑚, 𝑟, 3) by analysing the structure of the graph, then 

the largest minimum label of k or the upper bound k is analysed by labelling the vertices and edges 

of the graph. By obtaining the biggest lower bound and the smallest upper bound, the total vertex 

irregularity of the series parallel graph is determined. 

 

3. Result and Discussion 

 

 The result of this research is about the total vertex irregularity value of the graph 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 ≥ 4 

and 𝑟 ≥ 2 given in the following theorem. 

Theorem 1 Total vertex irregularity of the graph 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 ≥ 4and 𝑟 ≥ 2 is 

𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) = ⌈
3𝑚𝑟 + 2

3
⌉ 

Proof. We will prove 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) ≥ ⌈
3𝑚𝑟+2

3
⌉. Note that the degree of the smallest vertex of the graph 

𝑠𝑝(𝑚, 𝑟, 3) is 2 and the number of vertices with the smallest degree, which is degree 2 on the graph 

𝑠𝑝(𝑚, 𝑟, 3), is 3𝑚𝑟. To obtain optimal labelling, the weight of each vertex with degree 2 are labelled as 

3,4,5, … , 3𝑚𝑟 + 2. Since the vertex weight is the sum of labels of 1 vertex and 2 edges which associated with 

that vertex, the largest label is more or equal to ⌈
3𝑚𝑟+2

3
⌉. The ceiling function is used because in irregular 

total labelling of vertices, it is only allowed to label the graph with an integer. To guarantee this, the lower 

bound is rounded up. Then it is evident that 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) ≥ ⌈
3𝑚𝑟+2

3
⌉. 

 Next, it will be proved that 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) ≤ ⌈
3𝑚𝑟+2

3
⌉ by showing the vertex irregular total k-labelling 

of the graph 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 natural numbers and 𝑚 ≥ 4, that is 

1) The vertex labelling of the graphs 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 ≥ 4 and 𝑟 ≥ 2 

a. 𝜆(𝑣𝑖) = ⌈
𝑖

3
⌉ =

{
 
 

 
 
𝑖+2

3
       ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 

𝑖+1

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖

3
           ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

b. 𝜆(𝑥1) = {

6𝑟 − 1 ; if 𝑚 = 4
5𝑟 − 2 ; if 𝑚 = 5
3𝑟 − 3 ; if 𝑚 = 6
1            ; if 𝑚 ≥ 7

 

c. 𝜆(𝑥2) = 1 

d. 𝜆(𝑥3) = {

1      ; for 𝑟 ≡ 1 (𝑚𝑜𝑑 3) 
2     ; for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

1     ; for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)
 

e. 𝜆(𝑥4) = {
2𝑟 + 2 ; if 𝑚 = 4
1          ; if 𝑚 ≥ 5

 

2) The edge labels of the graphs 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 ≥ 4 and 𝑟 ≥ 2 

a. For 𝑖 = 1, 3𝑟 + 1, 6𝑟 + 1, 9𝑟 + 1,… , (3𝑚 − 3)𝑟 + 1 

http://dx.doi.org/10.30983/10483


Marzuki et al                                                                                                                                                                             Vol. 5  No. 2, Juli-Desember 2025 pp. 160-175 
 

 
http://dx.doi.org/10.30983/10483 

Creative Commons Attribution-ShareAlike 4.0 International License. Some rights reserved 

- 164 - 

𝜆(𝑥1𝑣𝑖) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 

𝑖 + 1

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

b. For 𝑖 = 𝑟, 4𝑟, 7𝑟, 10𝑟, … , (3𝑚 − 2)𝑟 

𝜆(𝑣𝑖𝑥2) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3)

𝑖 + 4

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

c. For 𝑖 = 𝑟 + 1, 4𝑟 + 1, 7𝑟 + 1,… , (3𝑚 − 2)𝑟 + 1 

𝜆(𝑥2𝑣𝑖) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3)

𝑖 + 1

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

d. For 𝑖 = 2𝑟, 5𝑟, 8𝑟, 11𝑟, … , (3𝑚 − 1)𝑟 

𝜆(𝑣𝑖𝑥3) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 

𝑖 + 4

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

e. For 𝑖 = 2𝑟 + 1, 5𝑟 + 1, 8𝑟 + 1, 11𝑟 + 1,… , (3𝑚 − 1)𝑟 + 1 

𝜆(𝑥3𝑣𝑖) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 

𝑖 + 1

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

f. For 𝑖 = 3𝑟, 6𝑟, 9𝑟, 12𝑟, … ,3𝑚𝑟 

𝜆(𝑥4𝑣𝑖) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 

𝑖 + 4

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

g. For 𝑖 = 𝑟, 4𝑟, 7𝑟, … , (3𝑚 − 2)𝑟; 

2𝑟, 5𝑟, 8𝑟, … , (3𝑚 − 1)𝑟; 

3𝑟, 6𝑟, 9𝑟, … ,3𝑚𝑟 

𝜆(𝑣𝑖−1𝑣𝑖) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 

𝑖 + 1

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

h. For 𝑖 = 1, 3𝑟 + 1, 6𝑟 + 1,… , (3𝑚 − 3)𝑟 + 1; 

𝑟 + 1, 4𝑟 + 1, 7𝑟 + 1,… , (3𝑚 − 2)r+1; 

2𝑟 + 1, 5𝑟 + 1, 8𝑟 + 1,… , (3𝑚 − 1)𝑟 + 1 
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𝜆(𝑣𝑖𝑣𝑖+1) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 

𝑖 + 4

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

i. For 𝑖 = 3𝑗𝑟 + 2, 3𝑗𝑟 + 3, 3𝑗𝑟 + 4,… ,3𝑗𝑟 + (𝑟 − 1); 

3𝑗𝑟 + (𝑟 + 2), 3𝑗𝑟 + (𝑟 + 3), 3𝑗𝑟 + (𝑟 + 4), … ,3𝑗𝑟 + (2𝑟 − 1); 

3𝑗𝑟 + (2𝑟 + 2), 3𝑗𝑟 + (2𝑟 + 3), 3𝑗𝑟 + (2𝑟 + 4), … ,3𝑗𝑟 + (3𝑟 − 1); 

𝜆(𝑣𝑖−1𝑣𝑖) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 

𝑖 + 1

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

𝜆(𝑣𝑖𝑣𝑖+1) =

{
 
 

 
 
𝑖 + 2

3
        ; for 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 

𝑖 + 4

3
        ; for 𝑖 ≡ 2 (𝑚𝑜𝑑 3)

𝑖 + 3

3
        ; for 𝑖 ≡ 0 (𝑚𝑜𝑑 3)

 

 According to the given labelling, the vertex weights 𝑣𝑖 for graph 𝑠𝑝(𝑚, 𝑟, 3) where 𝑚 ≥ 4 and 𝑟 ≥ 2 

are denoted by 𝑤(𝑣𝑖) which equals 𝑖 + 2. The weight of the vertex 𝑣𝑖 ranges from 3 to 3𝑚𝑟 + 2 as consecutive 

integers, proving that each vertex weight 𝑣𝑖 is unique in the graphs 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 ≥ 4 and 𝑟 ≥ 2. Next 

will be calculated the vertex weight 𝑥𝑖, with 𝑖 = 1,2,3,4, from the graph 𝑠𝑝(𝑚, 𝑟, 3), and it will be proven that 

each vertex weight 𝑣𝑖and each vertex weight 𝑥𝑖in the series–parallel graph 𝑠𝑝(𝑚, 𝑟, 3)are distinct for 𝑚 ≥ 4 

and 𝑟 ≥ 2. 

1. For 𝑚 = 4 and 𝑟 ≥ 2 

𝑤𝑡(𝑥1) = 12𝑟 + 3 

𝑤𝑡(𝑥2) =

{
 
 

 
 
44𝑟 + 19

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

44𝑟 + 35

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

44𝑟 + 27

3
 for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥3) =

{
 
 

 
 
52𝑟 + 35

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

52𝑟 + 22

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

52𝑟 + 27

3
   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥4) = 12𝑟 + 6 

For 𝑚 = 4, the vertex weights 𝑣𝑖 for 𝑖 = 1,2,3, … ,3𝑚𝑟 are consecutive integers from 3,4,5, … ,12𝑟 +

2. The following will show that 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3). 

For 𝑟 ≡ 1(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

12𝑟 + 2 < 12𝑟 + 3 < 12𝑟 + 6 <
44𝑟 + 19

3
<
52𝑟 + 35

3
. 

For 𝑟 ≡ 2(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 
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holds because 

12𝑟 + 2 < 12𝑟 + 3 < 12𝑟 + 6 <
44𝑟 + 35

3
<
52𝑟 + 22

3
. 

For 𝑟 ≡ 0(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

12𝑟 + 2 < 12𝑟 + 3 < 12𝑟 + 6 <
44𝑟 + 27

3
<
52𝑟 + 27

3
. 

These results show that every vertex weight in the graph 𝑠𝑝(𝑚, 𝑟, 3)for 𝑚 = 4 is distinct. 

 

2.  For 𝑚 = 5 and 𝑟 ≥ 2 

𝑤𝑡(𝑥1) = 15𝑟 + 3 

𝑤𝑡(𝑥2) =

{
 
 

 
 
70𝑟 + 23

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

70𝑟 + 43

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

70𝑟 + 33

3
   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥3) =

{
 
 

 
 
80𝑟 + 43

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

80𝑟 + 26

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

80𝑟 + 33

3
  for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥4) = 15𝑟 + 6 

For 𝑚 = 5, the vertex weights 𝑣𝑖 for 𝑖 = 1,2,3, … ,3𝑚𝑟 are consecutive integers from 3,4,5, … ,15𝑟 +

2. The following will show that 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3). 

For 𝑟 ≡ 1(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

15𝑟 + 2 < 15𝑟 + 3 < 15𝑟 + 6 <
70𝑟 + 23

3
<
80𝑟 + 43

3
. 

For 𝑟 ≡ 2(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

15𝑟 + 2 < 15𝑟 + 3 < 15𝑟 + 6 <
70𝑟 + 43

3
<
80𝑟 + 26

3
. 

For 𝑟 ≡ 0(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

15𝑟 + 2 < 15𝑟 + 3 < 15𝑟 + 6 <
70𝑟 + 33

3
<
80𝑟 + 33

3
. 

These results show that every vertex weight in the graph 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 = 5 is distinct. 

 

3.  For 𝑚 = 6 and 𝑟 ≥ 2 

𝑤𝑡(𝑥1) = 18𝑟 + 3 
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𝑤𝑡(𝑥2) =

{
 
 

 
 
102𝑟 + 27

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

102𝑟 + 51

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

102𝑟 + 39

3
   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥3) =

{
 
 

 
 
114𝑟 + 27

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

114𝑟 + 51

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

114𝑟 + 39

3
   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥4) = 21𝑟 + 7 

For 𝑚 = 6, the vertex weights 𝑣𝑖 for 𝑖 = 1,2,3, … ,3𝑚𝑟 are consecutive integers from 3,4,5, … ,18𝑟 +

2. The following will show that 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3). 

For 𝑟 ≡ 1(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

18𝑟 + 2 < 18𝑟 + 3 < 21𝑟 + 7 <
102𝑟 + 27

3
<
114𝑟 + 51

3
. 

For 𝑟 ≡ 2(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

18𝑟 + 2 < 18𝑟 + 3 < 21𝑟 + 7 <
102𝑟 + 51

3
<
114𝑟 + 30

3
. 

For 𝑟 ≡ 0(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

18𝑟 + 2 < 18𝑟 + 3 < 21𝑟 + 7 <
102𝑟 + 39

3
<
114𝑟 + 39

3
. 

These results show that every vertex weight in the graph 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 = 6 is distinct. 

 

4.  For 𝑚 = 7 and 𝑟 ≥ 2 

𝑤𝑡(𝑥1) = 21𝑟 + 8 

𝑤𝑡(𝑥2) =

{
 
 

 
 
140𝑟 + 31

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

140𝑟 + 59

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

140𝑟

3
+ 15   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥3) =

{
 
 

 
 
154𝑟 + 59

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

154𝑟 + 34

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

154𝑟

3
+ 15   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥4) = 28𝑟 + 8 

For 𝑚 = 7, the vertex weights 𝑣𝑖 for 𝑖 = 1,2,3, … ,3𝑚𝑟 are consecutive integers from 3,4,5, … ,21𝑟 +

2. The following will show that 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3). 

For 𝑟 ≡ 1(mod3) with 𝑟 ≥ 2, the inequality 
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𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

21𝑟 + 2 < 21𝑟 + 8 < 28𝑟 + 8 <
140𝑟 + 31

3
<
154𝑟 + 59

3
. 

For 𝑟 ≡ 2(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

21𝑟 + 2 < 21𝑟 + 8 < 28𝑟 + 8 <
140𝑟 + 59

3
<
154𝑟 + 34

3
. 

For 𝑟 ≡ 0(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

21𝑟 + 2 < 21𝑟 + 8 < 28𝑟 + 8 <
140𝑟

3
+ 15 <

154𝑟

3
+ 15. 

These results show that every vertex weight in the graph 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 = 7 is distinct. 

 

5.  For 𝑚 = 8 and 𝑟 ≥ 2 

𝑤𝑡(𝑥1) = 28𝑟 + 9 

𝑤𝑡(𝑥2) =

{
 
 

 
 
184𝑟 + 35

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

184𝑟 + 67

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

184𝑟

3
+ 17   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥3) =

{
 
 

 
 
200𝑟 + 67

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

200𝑟 + 38

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

200𝑟

3
+ 17   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥4) = 36𝑟 + 9 

For 𝑚 = 8, the vertex weights 𝑣𝑖 for 𝑖 = 1,2,3, … ,3𝑚𝑟are consecutive integers from 3,4,5, … ,24𝑟 +

2. The following will show that 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3). 

For 𝑟 ≡ 1(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

24𝑟 + 2 < 28𝑟 + 9 < 36𝑟 + 9 <
184𝑟 + 35

3
<
200𝑟 + 67

3
. 

For 𝑟 ≡ 2(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

24𝑟 + 2 < 28𝑟 + 9 < 36𝑟 + 9 <
184𝑟 + 67

3
<
200𝑟 + 38

3
. 

For 𝑟 ≡ 0(mod3) with 𝑟 ≥ 2, the inequality 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3) 

holds because 

24𝑟 + 2 < 28𝑟 + 9 < 36𝑟 + 9 <
184𝑟

3
+ 17 <

200𝑟

3
+ 17. 

These results show that every vertex weight in the graph 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 = 8 is distinct. 
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6.  For 𝑚 ≥ 9 and 𝑟 ≥ 2 

𝑤𝑡(𝑥1) =
𝑚2 −𝑚𝑟 + 2𝑚 + 2

2
 

𝑤𝑡(𝑥2) =

{
  
 

  
 
3𝑚2𝑟 −𝑚𝑟 + 4𝑚 + 3

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

3𝑚2𝑟 −𝑚𝑟 + 8𝑚 + 3

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

3𝑚2𝑟 − 𝑚𝑟 + 6𝑚 + 3

3
   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥3) =

{
  
 

  
 
3𝑚2𝑟 +𝑚𝑟 + 8𝑚 + 3

3
  for 𝑟 ≡ 1 (𝑚𝑜𝑑 3)

3𝑚2𝑟 +𝑚𝑟 + 4𝑚 + 6

3
  for 𝑟 ≡ 2 (𝑚𝑜𝑑 3)

3𝑚2𝑟 + 𝑚𝑟 + 6𝑚 + 3

3
   for 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

 

𝑤𝑡(𝑥4) =
𝑚2 −𝑚𝑟 + 2𝑚 + 2

2
 

For 𝑚 ≥ 9, the vertex weights 𝑣𝑖 for 𝑖 = 1,2,3, … ,3𝑚𝑟 are consecutive integers from 

3,4,5, … ,27𝑟 + 2. 

The following will be shown: 

𝑤𝑡(𝑣3𝑚𝑟) < 𝑤𝑡(𝑥1) < 𝑤𝑡(𝑥4) < 𝑤𝑡(𝑥2) < 𝑤𝑡(𝑥3). 

 

Case 1: 𝒓 ≡ 𝟏(𝐦𝐨𝐝𝟑) with 𝒓 ≥ 𝟐 

We will prove that 

3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
<
𝑚2𝑟 +𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 4𝑚 + 3

3

<
3𝑚2𝑟 + 𝑚𝑟 + 8𝑚 + 3

3
. 

The inequalities 

𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
<
𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
,
3𝑚2𝑟 −𝑚𝑟 + 4𝑚 + 3

3
<
3𝑚2𝑟 + 𝑚𝑟 + 8𝑚 + 3

3
 

are trivially true because the right-hand sides are larger than the left-hand sides. 

Thus, the nontrivial steps requiring proof are: 

3𝑚𝑟 + 2 <
𝑚2𝑟 −𝑚𝑟 + 2𝑚 + 2

2
,
𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 4𝑚 + 3

3
, 

which will be established using mathematical induction. 

Induction Proof 1 

To prove: 

3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
 for 𝑚 ≥ 9. 

Let 

𝑝(𝑚): 3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
. 

Base Step 

Because 𝑚 ≥ 9, we check 𝑚 = 9: 

3𝑚𝑟 + 2 = 27𝑟 + 2 <
72𝑟 + 20

2
=
92𝑟 − 9𝑟 + 2 ⋅ 9 + 2

2
=
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
. 

Thus, 𝑝(9) is true. 

Induction Step 

Assume 𝑝(𝑘)holds: 
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3𝑘𝑟 + 2 <
𝑘2𝑟 − 𝑘𝑟 + 2𝑘 + 2

2
. 

We must prove: 

3𝑘𝑟 + 3𝑟 + 2 <
𝑘2𝑟 + 𝑘𝑟 + 2𝑘 + 4

2
. 

Adding 3𝑟 to both sides of the induction hypothesis yields: 

3𝑘𝑟 + 3𝑟 + 2 <
𝑘2𝑟 − 𝑘𝑟 + 6𝑟 + 2𝑘 + 2

2
. 

Since 

2𝑘𝑟 − 6𝑟 + 2

2
≥ 0, 

we have 

𝑘2𝑟 − 𝑘𝑟 + 6𝑟 + 2𝑘 + 2

2
<
𝑘2𝑟 + 𝑘𝑟 + 2𝑘 + 4

2
. 

Thus, the inequality for 𝑘 + 1 holds and the induction is complete. 

Induction Proof 2 

To prove: 

𝑚2𝑟 +𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 4𝑚 + 3

3
for 𝑚 ≥ 9. 

Let 

𝑝(𝑚):
𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 4𝑚 + 3

3
. 

Base Step 

For 𝑚 = 9: 

90𝑟 + 20

2
<
234𝑟 + 39

3
. 

So 𝑝(9) holds. 

Induction Step 

Assume 

𝑘2𝑟 + 𝑘𝑟 + 2𝑘 + 2

2
<
3𝑘2𝑟 − 𝑘𝑟 + 4𝑘 + 3

3
. 

We need to prove: 

𝑘2𝑟 + 3𝑘𝑟 + 2𝑟 + 2𝑘 + 4

2
<
3𝑘2𝑟 + 5𝑘𝑟 + 2𝑟 + 4𝑘 + 7

3
. 

Adding 𝑘𝑟 + 𝑟 + 1 to both sides of the assumption gives the desired result, completing the induction. 

 

Case 2: 𝒓 ≡ 𝟐(𝐦𝐨𝐝𝟑), 𝒓 ≥ 𝟐 

The inequalities to be shown are: 

3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
<
𝑚2𝑟 +𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 8𝑚 + 3

3

<
3𝑚2𝑟 + 𝑚𝑟 + 4𝑚 + 6

3
. 

The inequalities 

𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
<
𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
,
3𝑚2𝑟 −𝑚𝑟 + 8𝑚 + 3

3
<
3𝑚2𝑟 + 𝑚𝑟 + 4𝑚 + 6

3
 

 

are clearly true, since the right-hand side is larger than the left-hand side. 

However, the inequalities 

3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
,
𝑚2𝑟 +𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 8𝑚 + 3

3
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require proof using mathematical induction. 

Induction Proof 1 

To prove: 

3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
for 𝑚 ≥ 9. 

Let 

𝑝(𝑚): 3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
. 

Base Case 

Since 𝑚 ≥ 9, we check 𝑚 = 9: 

3𝑚𝑟 + 2 = 27𝑟 + 2 <
72𝑟 + 20

2
=
92𝑟 − 9𝑟 + 2 ⋅ 9 + 2

2
=
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
. 

Thus, 𝑝(9) holds. 

Induction Step 

Assume 𝑝(𝑘) holds: 

3𝑘𝑟 + 2 <
𝑘2𝑟 − 𝑘𝑟 + 2𝑘 + 2

2
. 

We must prove: 

3𝑘𝑟 + 3𝑟 + 2 <
𝑘2𝑟 + 𝑘𝑟 + 2𝑘 + 4

2
. 

Adding 3𝑟 to both sides of the induction hypothesis gives: 

3𝑘𝑟 + 3𝑟 + 2 <
𝑘2𝑟 − 𝑘𝑟 + 6𝑟 + 2𝑘 + 2

2
. 

Since 

2𝑘𝑟 − 6𝑟 + 2

2
≥ 0, 

we obtain: 

𝑘2𝑟 − 𝑘𝑟 + 6𝑟 + 2𝑘 + 2

2
<
𝑘2𝑟 + 𝑘𝑟 + 2𝑘 + 4

2
. 

Thus, the inequality for 𝑘 + 1holds, and the induction is complete. 

Induction Proof 2 

To prove: 

𝑚2𝑟 +𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 8𝑚 + 3

3
for 𝑚 ≥ 9. 

Let 

𝑝(𝑚):
𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 8𝑚 + 3

3
. 

Base Case 

For 𝑚 = 9: 

𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
=
90𝑟 + 20

2
<
234𝑟 + 75

3
=
3 ⋅ 92𝑟 − 9𝑟 + 8 ⋅ 9 + 3

3
=
3𝑚2𝑟 − 𝑚𝑟 + 8𝑚 + 3

3
. 

Thus, 𝑝(9) is true. 

Induction Step 

Assume 𝑝(𝑘) holds: 

𝑘2𝑟 + 𝑘𝑟 + 2𝑘 + 2

2
<
3𝑘2𝑟 − 𝑘𝑟 + 8𝑘 + 3

3
. 

We must prove: 

𝑘2𝑟 + 3𝑘𝑟 + 2𝑟 + 2𝑘 + 4

2
<
3𝑘2𝑟 + 5𝑘𝑟 + 2𝑟 + 8𝑘 + 11

3
. 

Adding 𝑘𝑟 + 𝑟 + 1 to both sides of the induction hypothesis yields: 
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𝑘2𝑟 + 3𝑘𝑟 + 2𝑟 + 2𝑘 + 4

2
<
3𝑘2𝑟 + 2𝑘𝑟 + 3𝑟 + 4𝑘 + 6

3
. 

Since 

3𝑘𝑟 − 𝑟 + 5

3
≥ 0, 

we obtain: 

3𝑘2𝑟 + 2𝑘𝑟 + 3𝑟 + 4𝑘 + 6

3
<
3𝑘2𝑟 + 5𝑘𝑟 + 2𝑟 + 8𝑘 + 11

3
. 

Thus, the inequality for 𝑘 + 1 holds, completing the induction. 

 

Case 3: 𝒓 ≡ 𝟎(𝐦𝐨𝐝𝟑), 𝒓 ≥ 𝟐 

The inequalities to be shown are: 

3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
<
𝑚2𝑟 +𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 8𝑚 + 3

3

<
3𝑚2𝑟 + 𝑚𝑟 + 4𝑚 + 6

3
. 

The inequalities 

𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
<
𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
,
3𝑚2𝑟 −𝑚𝑟 + 8𝑚 + 3

3
<
3𝑚2𝑟 + 𝑚𝑟 + 4𝑚 + 6

3
 

are clearly true, since the right-hand side is greater than the left-hand side. 

The inequalities that require proof are 

3𝑚𝑟 + 2 <
𝑚2𝑟 −𝑚𝑟 + 2𝑚 + 2

2
,
𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 8𝑚 + 3

3
, 

and these will be proven using mathematical induction. 

Induction Proof 1 

To prove: 

3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
for 𝑚 ≥ 9. 

Let 

𝑝(𝑚): 3𝑚𝑟 + 2 <
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
. 

Base Case 

Since 𝑚 ≥ 9, check 𝑚 = 9: 

3𝑚𝑟 + 2 = 27𝑟 + 2 <
72𝑟 + 20

2
=
92𝑟 − 9𝑟 + 2 ⋅ 9 + 2

2
=
𝑚2𝑟 − 𝑚𝑟 + 2𝑚 + 2

2
. 

Thus, 𝑝(9) holds. 

Induction Step 

Assume 𝑝(𝑘) holds: 

3𝑘𝑟 + 2 <
𝑘2𝑟 − 𝑘𝑟 + 2𝑘 + 2

2
. 

We must prove: 

3𝑘𝑟 + 3𝑟 + 2 <
𝑘2𝑟 + 𝑘𝑟 + 2𝑘 + 4

2
. 

Adding 3𝑟 to both sides yields: 

3𝑘𝑟 + 3𝑟 + 2 <
𝑘2𝑟 − 𝑘𝑟 + 6𝑟 + 2𝑘 + 2

2
. 

Because 

2𝑘𝑟 − 6𝑟 + 2

2
≥ 0, 

we obtain: 
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𝑘2𝑟 − 𝑘𝑟 + 6𝑟 + 2𝑘 + 2

2
<
𝑘2𝑟 + 𝑘𝑟 + 2𝑘 + 4

2
. 

Thus, 𝑝(𝑘 + 1) holds, completing the induction. 

Induction Proof 2 

To prove: 

𝑚2𝑟 +𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 6𝑚 + 3

3
for 𝑚 ≥ 9. 

Let 

𝑝(𝑚):
𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
<
3𝑚2𝑟 − 𝑚𝑟 + 6𝑚 + 3

3
. 

Base Case 

For 𝑚 = 9: 

𝑚2𝑟 + 𝑚𝑟 + 2𝑚 + 2

2
=
90𝑟 + 20

2
<
234𝑟 + 75

3
=
3 ⋅ 92𝑟 − 9𝑟 + 8 ⋅ 9 + 3

3
=
3𝑚2𝑟 − 𝑚𝑟 + 8𝑚 + 3

3
. 

Thus, 𝑝(9) is true. 

Induction Step 

Assume 𝑝(𝑘)holds: 

𝑘2𝑟 + 𝑘𝑟 + 2𝑘 + 2

2
<
3𝑘2𝑟 − 𝑘𝑟 + 6𝑘 + 3

3
. 

We must prove: 

𝑘2𝑟 + 3𝑘𝑟 + 2𝑟 + 2𝑘 + 4

2
<
3𝑘2𝑟 + 5𝑘𝑟 + 2𝑟 + 6𝑘 + 9

3
. 

Adding 𝑘𝑟 + 𝑟 + 1to both sides of the induction hypothesis gives: 

𝑘2𝑟 + 3𝑘𝑟 + 2𝑟 + 2𝑘 + 4

2
<
3𝑘2𝑟 + 2𝑘𝑟 + 3𝑟 + 6𝑘 + 6

3
. 

Since 

3𝑘𝑟 − 𝑟 + 3

3
≥ 0, 

it follows that: 

3𝑘2𝑟 + 2𝑘𝑟 + 3𝑟 + 6𝑘 + 6

3
<
3𝑘2𝑟 + 5𝑘𝑟 + 2𝑟 + 6𝑘 + 9

3
. 

Thus, the inequality for 𝑘 + 1 holds. 

 

 The calculation of the vertex weight shows that 𝑤(𝑣3𝑚𝑟) < 𝑤(𝑥1) < 𝑤(𝑥4) < 𝑤(𝑥2) < 𝑤(𝑥3), indicating 

that each vertex in graph 𝑠𝑝(𝑚, 𝑟, 3) has a unique weight. Therefore, it can be deduced that in the vertex 

irregular total labelling of the graph 𝑠𝑝(𝑚, 𝑟, 3), each vertex has a distinct weight and 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) ≤

⌈(3𝑚𝑟 + 2)/3⌉. From the above explanation, we can conclude that 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) ≥ ⌈(3𝑚𝑟 + 2)/3⌉ and 

𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) ≤ ⌈(3𝑚𝑟 + 2)/3⌉, thus proving that 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) = ⌈(3𝑚𝑟 + 2)/3⌉. 

 As an illustration of the above theorem, an example is given for labelling the irregular totals of vertices 

for the graphs 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 = 13 and 𝑟 = 2. 
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 Figure 2. Graph illustration 𝒔𝒑(𝟏𝟑, 𝟐, 𝟑) 

 
4. Conclusion 

 

Based on the description above, it can be concluded that there is an irregular total ⌈
3𝑚𝑟+2

3
⌉-labelling of 

vertices on a parallel series graph 𝑠𝑝(𝑚, 𝑟, 3) for 𝑚 ≥ 4 and 𝑟 ≥ 2 and an irregular total ⌈
4𝑚𝑟+2

3
⌉-labelling of 

vertices on a parallel series graph 𝑠𝑝(𝑚, 𝑟, 4) for 𝑚 ≥ 5 and 𝑟 ≥ 1. Hence, it is proven that 𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) ≥

⌈
3𝑚𝑟+2

3
⌉. As the lower bound has been obtained, and the upper bound of  𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)), so that 

𝑡𝑣𝑠(𝑠𝑝(𝑚, 𝑟, 3)) ≤ ⌈
3𝑚𝑟+2

3
⌉ .  
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