Artificial Neural Network Prediction Model for Agricultural Commodity Production Using Backpropagation Algorithm
DOI:
https://doi.org/10.30983/knowbase.v5i1.9530Keywords:
Algoritma Backpropagation, model prediksi, jaringan syaraf tiruanAbstract
The development of Artificial Intelligence (AI) technology has been widely used by the Government and Society to support daily activities, including supporting the decision-making process. In Indonesia's agricultural sector, innovations are currently being implemented using Machine Learning methods, especially Artificial Neural Networks, to estimate the yield of an agricultural commodity. This technology is very relevant to be applied in the agricultural sector, especially since the majority of Indonesians are farmers. With prediction of production and prices, the Government can estimate the amount of production and immediately set a strategy to keep prices stable. The use of predictive data on agricultural production results is very important in maintaining food availability and preventing price fluctuations that affect society. This study uses data on chili commodities, employing a qualitative method with the Backpropagation Algorithm of Artificial Neural Networks. The objective is to generate projections of the Artificial Neural Network (ANN) model using the Altair AI Studio with minimal error so that better prediction values and performances are produced. Based on the results obtained, the best network architecture is the 12-25-1 model for large chili production, and 12-15-1 for bird’s eye chili pepper. This model is proven to be able to help production planning, supply distribution arrangements, and maintain price and supply stability by related agencies.
References
D. sundari, Gusrini, Pengetahuan Argoindustri. Gita Lentera, 2020. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=3TkPEQAAQBAJ&oi=fnd&pg=PA2&dq=indonesia+sebagai+negara+agraris&ots=f60Q-szv-F&sig=jYzCGMZwMkClA7XtJb3plDoK-iE&redir_esc=y#v=onepage&q=indonesia sebagai negara agraris&f=false
Q. Ayun, S. Kurniawan, and W. A. Saputro, “Perkembangan Konversi Lahan Pertanian Di Bagian Negara Agraris,” Vigor J. Ilmu Pertan. Trop. Dan Subtrop., vol. 5, no. 2, pp. 38–44, 2020, doi: 10.31002/vigor.v5i2.3040.
E. P. C. Edi Ismanto, “Jaringan Syaraf Tiruan Algoritma Backpropagation Dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 2, no. 2, pp. 196–209, 2017, doi: 10.36341/rabit.v2i2.152.
J. S. T. P. H. P. T. M. M. Backpropagation, “D. M. Sari, M. Ikhsan, and R. A. Putri,” J. Sist. Inf. Bisnis, vol. 5, pp. 109–121, 2024, doi: 10.55122/junsibi.v5i1.1221.
A. F. A. Tbn and R. K. R., “Penerapan Algoritma Backpropagation untuk Prediksi Hasil Panen Padi di Kabupaten Labuhan Batu Utara,” J. Teknol. Sist. Inf. dan Apl., vol. 7, no. 1, pp. 335–342, 2024, doi: 10.32493/jtsi.v7i1.38318.
PT Pintu Kemana Saja, “No Title.” [Online]. Available: https://pintu.co.id/blog/apa-itu-harga-pasar-adalah
H. I. Fathoni, B. Rahayudi, and D. E. Ratnawati, “Prediksi Hasil Panen Udang Vaname menggunakan Algoritme Backpropagation Neural Network,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 8, pp. 3587–3595, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
S. J. BPK, “UU Nomor 25 Tahun 2009 tentang Pelayanan Publik,” 2009, [Online]. Available: https://peraturan.bpk.go.id/Details/38748/uu-no-25-tahun-2009
Indrajit, Elemen Sukses Pengembangan E-Government. Academia.edu, 2004.
D. Hutabarat, Solikhun, M. Fauzan, A. P. Windarto, and F. Rizki, “Penerapan Algoritma Backpropagation dalam Memprediksi Hasil Panen Tanaman Sayuran,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 21–29, 2021, doi: 10.37148/bios.v2i1.18.
Triman Tapi, Mikhael, and Yohanis Yan Makabori, “Transformasi Penyuluhan Pertanian Menuju Society 5.0: Analisis Peran Teknologi Informasi dan Komunikasi,” J. Sustain. Agric. Ext., vol. 2, no. 1, pp. 37–47, 2024, doi: 10.47687/josae.v2i1.820.
A. M. and P. Priyadi, “Analisis Risiko Produksi Cabai Merah Di Desa Margototo Kecamatan Metro Kibang Kabupaten Lampung Timur,” J. Food Syst. Agribus., vol. 5, no. No.2, pp. 93–98, 2021, [Online]. Available: http://dx.doi.org/10.23960/jiia.v13i1.9540
S. Prayitno, A.B., Hasyim, A.I., & Situmorang, “Efisiensi Pemasaran Cabai Merah di Kecamatan Adiluwih Kabupaten Pringsewu Provinsi Lampung,” JIIA J. Ilmu Ilmu Agribisnis, vol. 1(1), pp. 53–59, 2013.
B. P. Statistik, “Produksi Tanaman Sayur-Sayuran Menurut Kecamatan di Kabupaten Magelang (Kuintal),” 2024.
R. S. Pradana, “Penerapan Analisis Jalur dalam Mengidentifikasi Penyebab Fluktuasi Harga Cabai Merah Di Kabupaten Aceh Jaya,” J. AGRICA, vol. 14, pp. 20–32, 2021, doi: 10.31289/agrica.v14i1.4594.
and N. D. N. Husna, Yusdiana, “Fluktuasi Harga Cabai Merah Keriting (Capsicum annum L.) di Provinsi Aceh,” J. Sains Pertan., vol. 8, no. 2, pp. 58–62, 2024, doi: https://doi.org/10.51179/jsp.v8i2.2616.
S. J. BPK, “Undang-Undang Nomor 18 Tahun 2012 tentang Pangan.” [Online]. Available: https://peraturan.bpk.go.id/Details/39100
S. J. BPK, “Undang-Undang 23 2014 tentang Pemerintahan Daerah.” [Online]. Available: https://peraturan.bpk.go.id/Details/38685/uu-no-23-tahun-2014
B. P. S. K. Magelang, “Produksi Tanaman Sayur-Sayuran Menurut Kecamatan di Kabupaten Magelang (Kuintal).” [Online]. Available: https://magelangkab.bps.go.id/id/statistics-table/2/MjA0IzI=/produksi-tanaman-sayur-sayuran-menurut-kecamatan-di-kabupaten-magelang--kuintal-.html
Y. A. Purmala, “Penerapan machine learning dalam meningkatkan produktivitas di industri manufaktur: Tinjauan literatur (Implementation of machine learning to increase productivity in the manufacturing industry: A literature review),” Oper. Excell. J. Appl. Ind. Eng., vol. 13, no. 2, pp. 267–275, 2021, doi: doi.org/10.22441/oe.2021.v13.i2.026.
and D. S. R. Salis, A. P. Windarto, “Implementasi Algoritma Backpropagation Untuk Prediksi Jumlah Siswa SMA,” J. Media Inform. Budidarma, vol. 8, pp. 1597–1608, 2024, doi: 10.30865/mib.v8i3.7774.
E. S. and A. H. Mirza, “Prediksi Hasil Produksi Ikan Lele Menggunakan Machine Learning (Studi Kasus Dinas Perikanan Kabupaten Muara Enim),” J. Inform. Sains Dan Teknol., vol. 9, pp. 55–64, 2024, doi: https://doi.org/10.24252/instek.v9i1.46406.
R. Riyanda, A. H. H. Pardede, and R. Saragih, “Jaringan Syaraf Tiruan Memprediksi Kebutuhan Obat-Obatan Menggunakan Metode Backpropagation ( Studi Kasus : UPTD Puskesmas Bahorok ),” Semin. Nas. Inform., pp. 47–55, 2021.
J. Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Zhang, J., … Xie, “Integrating Multi-Source Data for Rice Yield Prediction across China using Machine Learning and Deep Learning Approaches. Agricultural and Forest Meteorology,” vol. 297, no. 108275, 2021.
D. Sutejo, V. Indra, Y. Adhi, and S. Kacung, “Analysis of A Priori Algorithm in Medical Data for Heart Disease Identification with Association Rule Mining,” vol. 04, no. 02, 2024.
W. A. Wanto, Defit, “Algoritma Fungsi Perlatihanpada Machine Learningberbasis ANNuntuk Peramalan FenomenaBencana,” RESTI (Rekayasa Sist. dan Teknol. Inf., vol. 5, no. 2, 2021, doi: https://doi.org/10.29207/resti.v5i2.3031.
H. G. Praveen U, Ganjeizadeh F, “Inventory management and cost reduction of supply chain processes using AI based time-series forecasting and ANN modeling,” Elsevier, vol. 38, pp. 256–263, 2020, doi: https://doi.org/10.1016/j.promfg.2020.01.034.
M. Thoriq, “Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation,” J. Inf. dan Teknol., vol. 4, pp. 27–32, 2022, doi: 10.37034/jidt.v4i1.178.
M. I. Habibi, A. Nazir, E. Haerani, and E. Budianita, “Application of Data Mining for Ceramic Sales Data Association Using Apriori Algorithm,” vol. 04, no. 02, pp. 105–114, 2024.
L. J. Moleong, Metodologi Penelitian Kualitatif. Bandung: : PT Remaja Rosdakarya, 2007.
R. Maiyuriska, “Penerapan Jaringan Syaraf Tiruan dengan Algoritma Backpropagation dalam Memprediksi Hasil Panen Gabah Padi,” J. Inform. Ekon. Bisnis, vol. 4, pp. 28–33, 2022, doi: 10.37034/infeb.v4i1.115.
A. N. Khomarudin and A. Hidayat, “K-Means Clustering Algorithm to See the Correlation of Tahfidz Activities with Student’s Learning Outcomes,” Knowbase Int. J. Knowl. Database, vol. 2, no. 1, p. 01, 2022, doi: 10.30983/ijokid.v2i1.5672.
and M. R. Oates j.b, Griffiths M, No TitleResearching information systems and computing – second edition. Sage, 2022.
G. H. Martono and N. Sulistianingsih, “Enhancing Stroke Diagnosis with Machine Learning and SHAP-Based Explainable AI Models,” vol. 04, no. 02, pp. 189–203, 2024.
H. P. and N. U. Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 100–107, 2020, doi: 10.25077/teknosi.v6i2.2020.100-107.
R. T. Hasibuan, “Implementation of the Brute Force Algorithm in the Design of Android-Based Thesis Catalogs,” Knowbase Int. J. Knowl. Database, vol. 1, no. 2, p. 148, 2021, doi: 10.30983/ijokid.v1i2.5042.
and Y. B. N. A. Loanga, R. Indriani, “Analisis Faktor-Faktor Yang Mempengaruhi Fluktuasi Harga Bird’s eye chili pepper Di Kecamatan Sumalata Kabupaten Gorontalo Utara,” Econ. Digit. Bus. Rev., no. No.2, pp. 235–242, 2023, [Online]. Available: https://doi.org/10.37531/ecotal.v4i2.768
E. Alaros, M. Marjani, D. A. Shafiq, and D. Asirvatham, “Predicting consumption intention of consumer relationship management users using deep learning techniques: A review,” Indones. J. Sci. Technol., vol. 8, no. 2, pp. 307–328, 2023, doi: 10.17509/ijost.v8i2.55814.
U. Praveen, G. Farnaz, and G. Hatim, “Inventory management and cost reduction of supply chain processes using AI based time-series forecasting and ANN modeling,” Procedia Manuf., vol. 38, no. Faim 2019, pp. 256–263, 2019, doi: 10.1016/j.promfg.2020.01.034.
R. J. Buhungo, I. K. Hasan, R. J. Buhungo, and I. K. Hasan, “Penerapan Hybrid Metode ARFIMA-ANN Menggunakan Algoritma Backpropagation pada Peramalan Indeks Harga Saham Gabungan Penerapan Hybrid Metode ARFIMA-ANN Menggunakan Algoritma Backpropagation pada Peramalan Indeks Harga Saham Gabungan,” vol. 12, no. 2, pp. 200–205, 2024.
and I. N. F. D. R. Putri, D. Swanjaya, “Model Integrasi Algoritma Spectral Clustering Dan Backpropagation Pada Prediksi Penjualan Barang,” J. Nusant. Eng., vol. 7, no. 1, pp. 59–66, 2024, doi: https://doi.org/10.29407/noe.v7i01.20885.
F. M. and R. Fauzi, “Prediksi Penyakit Diabetes Melitus Menggunakan Jaringan Syaraf Tiruan Dengan Metode Backpropagation,” J. Inform. Utama, vol. 1, pp. 26–34, 2024, doi: 10.55903/jitu.v2i1.163.
A. A. Studio, “Altair Engineering.” [Online]. Available: https://docs.rapidminer.com/latest/studio/index.html.
T. P. B. K. Magelang, “Kabupaten Magelang Dalam Angka 2025.” [Online]. Available: https://magelangkab.bps.go.id/id/publication/2025/02/28/281d0795d4de4ee687252e54/kabupaten-magelang-dalam-angka-2025.html
H. Sulistiani, A. Syarif, and K. N. Berawi, “Trends in machine learning for predicting personality disorder : a bibliometric analysis,” vol. 38, no. 2, pp. 1299–1307, 2025, doi: 10.11591/ijeecs.v38.i2.pp1299-1307.
K. Indrawan, “Analisis Algoritma Jaringan Syaraf Tiruan Dengan Metode Backpropagation Dalam Mendeteksi Keahlian Mahasiswa Program Studi Teknik Informatika Universitas Islam Balitar,” Mnemonic, vol. 5, no. 1, 2022.
bps.go.id, “statistik-telekomunikasi-indonesia-2021 (BPS),” 2021.
P. N. Napitupulu, A. R. Damanik, and J. E. Napitupulu, “Implementasi Algoritma Backpropagation Jaringan Syaraf Tiruan Untuk Prediksi Angka Harapan Hidup Di Kota Jambi,” J. JPILKOM ( J. Penelit. Ilmu Komput. ), vol. 1, no. 1, pp. 10–15, 2023.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Rina Wahyuni, Sakti Wira Adi Utomo, TB. Muhammad Endra Zhafir Al Ghifari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
