Implementation of a K-Means-Based Intelligent Patient Complaint Clustering System to Identify Handling Priorities

Authors

  • M. Agung vafky Ideal Institut Teknologi Mitra Gama, Bengkalis, Indonesia
  • Nurfiah Universitas Andalas, Padang, Indonesia
  • Idir Fitriyanto Institut Teknologi Mitra Gama, Bengkalis, Indonesia

DOI:

https://doi.org/10.30983/knowbase.v5i1.9529

Keywords:

artificial intelligence, machine learning, software engineering, medical, waterfall

Abstract

Patient complaints are the body’s response to health disturbances, triggered by internal factors such as genetics or external ones like the living environment. Understanding these causes allows community health centers (puskesmas) to take more effective preventive measures and design more targeted services. This study utilizes patient complaint data sourced from medical records, which include biodata and medical history, as well as complaint details that form the research subject. The main goal of this study is to develop an intelligent system that can generate clusters of patient complaints using the K-Means Clustering algorithm. The system is developed using the Research and Development (RnD) method. The clustering process applies a data mining approach, producing clusters based on patient complaints. A total of 600 complaint records, categorized into 72 distinct types, were used. The output consists of three clusters: C1 (high intensity) with 24 categories, C2 (moderate intensity) with 14 categories, and C3 (low intensity) with 34 categories. A practicality test yielded a score of 0.81, indicating the system is highly practical, while an effectiveness test by medical staff scored 0.88, showing the system is highly effective. This system enables health centers to identify trending complaints in the community and develop more focused prevention and treatment strategies. The clustering results also serve as a valuable foundation for strategic decision-making in disease control.

References

S. N. Utami and S. Lubis, “Efektivitas Akreditasi Puskesmas Terhadap Kualitas Puskesmas Medan Helvetia,” Publik Reform, vol. 8, no. 2, pp. 10–21, 2021, doi: 10.46576/jpr.v8i2.1658.

D. Penerapan and M. Fifo, “Tinjauan Literatur Analisis Faktor Penyebab Keterlambatan Penyediaan Rekam Medis Rumah Sakit Di Indonesia,” J. Rekam Medis dan Inf. Kesehat. Indones., vol. 01, pp. 17–23, 2023, doi: https://doi.org/10.62951/jurmiki.v1i1.5.

U. Suriani, “Penerapan Data Mining untuk Memprediksi Tingkat Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree C4.5,” Journalcisa, vol. 3, no. 2, pp. 55–66, 2023, doi: https://doi.org/10.51519/journalcisa.v4i2.393.

Y. F. S. Y. Damanik, S. Sumarno, I. Gunawan, D. Hartama, and I. O. Kirana, “Penerapan Data Mining Untuk Pengelompokan Penyebaran Covid-19 Di Sumatera Utara Menggunakan Algoritma K-Means,” J. Ilmu Komput. dan Inform., vol. 1, no. 2, pp. 109–132, 2021, doi: 10.54082/jiki.13.

F. A. Tanjung, A. P. Windarto, and M. Fauzan, “Penerapan Metode K-Means Pada Pengelompokkan Pengangguran Di Indonesia,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, p. 61, 2021, doi: 10.30645/jurasik.v6i1.271.

M. A. V. Ideal, “Classification of Patient Complaints against Patient Medical Record Data Using the K Means Method,” J. Sistim Inf. dan Teknol., vol. 5, pp. 1–6, 2022, doi: 10.37034/jsisfotek.v5i1.151.

E. M. Fitri, R. R. Suryono, and A. Wantoro, “Klasterisasi Data Penjualan Berdasarkan Wilayah Menggunakan Metode K-Means Pada Pt Xyz,” J. Komputasi, vol. 11, no. 2, pp. 157–168, 2023, doi: 10.23960/komputasi.v11i2.12582.

T. Suryani, A. Faisol, and N. Vendyansyah, “Sistem Informasi Geografis Pemetaan Kerusakan Jalan Di Kabupaten Malang Menggunakan Metode K-Means,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, pp. 380–388, 2021, doi: 10.36040/jati.v5i1.3259.

F. Handayani, “Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokan Mahasiswa Berdasarkan Gaya Belajar,” J. Teknol. dan Inf., vol. 12, no. 1, pp. 46–63, 2022, doi: 10.34010/jati.v12i1.6733.

M. Ali Hasymi, A. Faisol, and F. Ariwibisono, “Sistem Informasi Geografis Pemetaan Warga Kurang Mampu Di Kelurahan Karang Besuki Menggunakan Metode K-Means Clustering,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, pp. 284–290, 2021, doi: 10.36040/jati.v5i1.3269.

M. Waruwu, “Metode Penelitian dan Pengembangan (R&D): Konsep, Jenis, Tahapan dan Kelebihan,” J. Ilm. Profesi Pendidik., vol. 9, no. 2, pp. 1220–1230, 2024, doi: 10.29303/jipp.v9i2.2141.

Ichsan Raksa Gumilang, “Penerapan Metode SDLC (System Devlopment Life Cycle) Pada Website Penjualan Produk Vapor,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 47–56, 2022, doi: 10.55606/jurritek.v1i1.144.

A. Fitri, L. Efriyanti, and R. Silmi, “Pengembangan Modul Ajar Digital Informatika Jaringan,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 33–38, 2023.

Z. Rahmah, S. Derta, H. Antoni Musril, and R. Okra, “Perancangan Website Eduji Menggunakan CMS Wordpress,” Intellect Indones. J. Learn. Technol. Innov., vol. 1, no. 2, pp. 205–218, 2022, doi: 10.57255/intellect.v1i2.206.

Uminingsih, M. Nur Ichsanudin, M. Yusuf, and S. Suraya, “Pengujian Fungsional Perangkat Lunak Sistem Informasi Perpustakaan Dengan Metode Black Box Testing Bagi Pemula,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 1, no. 2, pp. 1–8, 2022, doi: 10.55123/storage.v1i2.270.

N. R. A. Nabil, I. Wulandari, S. Yamtinah, S. R. D. Ariani, and M. Ulfa, “Analisis Indeks Aiken untuk Mengetahui Validitas Isi Instrumen Asesmen Kompetensi Minimum Berbasis Konteks Sains Kimia,” J. Penelit. Pendidik., vol. 25, no. 2, pp. 184–191, 2022.

N. Afifah and T. Suhery, “PENGEMBANGAN INSTRUMEN VALIDASI UNTUK EXPERT REVIEW TENTANG 1 ) Program Studi Pendidikan Kimia , Universitas Sriwijaya 2 ) Program Studi Pendidikan Kimia , Universitas Sriwijaya Email : [email protected],” Pros. Semin. Nas. Pendidik. IPA Tahun 2021, pp. 1–13, 2021.

S. S. Febriani and S. Aini, “Pengembangan Media Pembelajaran Powerpoint Interaktif Berbasis Inkuiri Terbimbing pada Materi Ikatan Kimia Kelas X SMA/MA,” Ranah Res. J. Multidiscip. Res. Dev., vol. 3, no. 4, pp. 215–222, 2021, doi: 10.38035/rrj.v3i4.343.

D. S Oktavia, S. Zakir, S. Supriadi, and L. Efriyanti, “Perancangan Media Pembelajaran Ipa Kelas Viii Menggunakan Aplikasi Canva Dengan Model Microblogging Di Smpn 1 Lubuk Alung,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1764–1769, 2023, doi: 10.36040/jati.v7i3.7707.

A. W. Alsyabri, “Validitas dan Efektivitas Media Pembelajaran Berbasis Android Mata Pelajaran Komputer dan Jaringan Dasar,” J. Educ. Inform. Technol. Sci., vol. 3, no. 1, pp. 1–10, 2021, doi: 10.37859/jeits.v3i1.2602.

U. Yusiana and S. P. Prasetya, “Pengembangan Media E-comic Terhadap Hasil Belajar Peserta Didik Dalam Pembelajaran IPS,” J. Dialekt. Pendidik. IPS, vol. 2, no. 1, pp. 23–33, 2022, [Online]. Available: https://ejournal.unesa.ac.id/index.php/PENIPS/article/view/44636%0Ahttps://ejournal.unesa.ac.id

Downloads

Published

2025-06-30

How to Cite

Ideal, M. A. vafky, Nurfiah, & Idir Fitriyanto. (2025). Implementation of a K-Means-Based Intelligent Patient Complaint Clustering System to Identify Handling Priorities. Knowbase : International Journal of Knowledge in Database, 5(1), 69–80. https://doi.org/10.30983/knowbase.v5i1.9529

Issue

Section

Articles

Citation Check