Application of Data Mining for Ceramic Sales Data Association Using Apriori Algorithm

Authors

  • M. Ilham Habibi Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Alwis Nazir Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Elvia Budianita Universitas Islam Negeri Sultan Syarif Kasim Riau

DOI:

https://doi.org/10.30983/knowbase.v5i2.8757

Keywords:

Algoritma Apriori, Support, Confidence

Abstract

This research is conducted to provide an understanding of consumer purchasing patterns at CV. Sukses Bersama by applying data mining using the association rules method and the Apriori algorithm to identify the relationships between one item that influences other items within a ceramic sales dataset at CV. Sukses Bersama. This information is expected to serve as a foundation for improving sales strategies, optimizing customer satisfaction, and expanding the company's market share. The Apriori algorithm is a popular algorithm implemented to identify association rules in data mining. The Apriori algorithm was chosen due to its ability to efficiently identify association rules and its good scalability in handling large datasets. This research begins with the collection of ceramic sales data, followed by data preprocessing to clean and prepare the data. The Apriori algorithm is then applied to discover the association rules, which generate two matrices: support and confidence, and the results are subsequently evaluated. This research was conducted using Google Colaboratory, a web application that is a cloud-based platform provided by Google to run Python code. The results of the study show that the Apriori algorithm can depict significant association structures between different ceramic brand types in the sales data of CV. Sukses Bersama. The calculation results show that the rule has the maximum support and confidence value, namely 67% support value and 84% confidence value in the rule "if you buy the DIAMD brand, you will buy the TOTAL brand"

References

Ilham Fikriansyah, “4 Perusahaan Besar yang Bangkrut di Indonesia dan Penyebabnya,” detikFinance. Accessed: Nov. 18, 2024. [Online]. Available: https://finance.detik.com/berita-ekonomi-bisnis/d-7545244/4-perusahaan-besar-yang-bangkrut-di-indonesia-dan-penyebabnya

M. Susanti, “Analisa Penjualan Produk Asuransi Jiwa Unitlink Bancassurance PT Commonwelath Life Dengan Metode Algoritma Apriori,” J. Infortech, vol. 1, no. 2, pp. 105–111, 2019.

A. Prasetyo, R. Sastra, and N. Musyaffa, “Implementasi Data Mining Untuk Analisis Data Penjualan Dengan Menggunakan Algoritma Apriori (Studi Kasus Dapoerin’S),” J. Khatulistiwa Inform., vol. 8, no. 2, 2020, doi: 10.31294/jki.v8i2.8994.

B. S. Pranata and D. P. Utomo, “Penerapan Data Mining Algoritma FP-Growth Untuk Persediaan Sparepart Pada Bengkel Motor (Study Kasus Bengkel Sinar Service),” Bull. Inf. Technol., vol. 1, no. 2, pp. 83–91, 2020.

I. Maryani, O. Revianti, H. M. Nur, and S. Sunanto, “Implementasi Data Mining Pada Penjualan Di Toko GOC Kosmetik Dengan Menggunakan Metode Algoritma Apriori,” Indones. J. Softw. Eng., vol. 8, no. 1, pp. 92–98, 2022, doi: 10.31294/ijse.v8i1.13017.

S. Styawati, A. Nurkholis, and K. N. Anjumi, “Analisis Pola Transaksi Pelanggan Menggunakan Algoritme Apriori,” J. Sains Komput. Inform., vol. 5, no. September, pp. 619–626, 2021.

E. Srikanti, R. F. Yansi, Norhavina, I. Permana, and F. N. Salisah, “Penerapan Algoritma Apriori untuk Mencari Aturan Asosiasi pada Data Peminjaman Buku di Perpustakaan,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 4, no. 1, pp. 77–80, 2018.

Z. Abidin, A. K. Amartya, and A. Nurdin, “PENERAPAN ALGORITMA APRIORI PADA PENJUALAN SUKU CADANG KENDARAAN RODA DUA ( STUDI KASUS : TOKO PRIMA MOTOR SIDOMULYO ),” J. TEKNOINFO, vol. 16, pp. 225–232, 2022.

C. J. Nadilla and J. A. Razaq, “Analisa Penjualan Makanan Minuman Menggunakan Kaidah Asosiasi Dengan Algoritma Apriori (Studi Kasus : Restoran LA Steak Semarang),” Proceeding SENDIU, pp. 338–346, 2020.

A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.

N. Agustiani, D. Suhendro, W. Saputra, and S. Tunas Bangsa Pematangsiantar, “Penerapan Data Mining Metode Apriori Dalam Implementasi Penjualan Di Alfamart,” Pros. Semin. Nas. Ris. Dan Inf. Sci., vol. 2, pp. 300–304, 2020.

S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,” J. Nas. Komputasi dan Teknol. Inf., vol. 1, no. 2, 2018, doi: 10.32672/jnkti.v1i2.771.

J. R. Gumilang, “Implementasi Algoritma Apriori Untuk Analisis Penjualan Konter Berbasis Web,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 1, no. 2, pp. 226–233, 2021, doi: 10.33365/jatika.v1i2.612.

A. Wadanur and A. A. Sari, “Implementasi Algoritma Apriori dan FP-Growth pada Penjualan Spareparts,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 107–115, 2022, doi: 10.29408/edumatic.v6i1.5470.

Y. Lizar, A. S. Firrizqi, A. Guci, and J. Sunadi, “Data Mining Analysis to Predict Student Skills Using Naïve Bayes Method,” vol. 03, no. 02, pp. 150–159, 2023.

A. N. Khomarudin and A. Hidayat, “K-Means Clustering Algorithm to See the Correlation of Tahfidz Activities with Student’s Learning Outcomes,” Knowbase Int. J. Knowl. Database, vol. 2, no. 1, p. 01, 2022, doi: 10.30983/ijokid.v2i1.5672.

F. A. Rohmah, S. Kacung, and E. Prihartono, “Association Rule Mining To Enhance Sata Bottle Sales,” vol. 04, no. 01, pp. 28–37, 2024.

S. Sutrisno, “Penerapan Algoritma Apriori Untuk Mencari Pola Penjualan Produk Dana Pada Pt Bank Rakyat Indonesia (Persero) Tbk Kanca Jakarta Pasar Minggu,” J. Sist. Inf. dan Inform., vol. 3, no. 1, pp. 12–26, 2020, doi: 10.47080/simika.v3i1.834.

A. W. Sudrajat and Ermatita, “Penerapan Metode Association Rule Mining Dalam Pengembangan Umkm Dengan Algoritma FP-Growth,” Pros. Semin. Nas. Apl. Sains Teknol., vol. 1, no. 1, pp. 147–155, 2021.

Downloads

Submitted

2024-11-13

Published

2024-12-05