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Stroke is a serious illness that needs to be treated quickly to enhance patient 
outcome. Machine Learning (ML) offers promising potential for automated 
stroke detection through precise neuroimaging analysis. Although existing 
research has explored ML applications in stroke medicine, challenges remain, 
such as validation concerns and limitations within available datasets. The study 
aims to compare ML models and SHapley Additive exPlanations (SHAP) 
algorithm insights for stroke detection optimization. The research evaluates 
classifiers' performance, including Deep Neural Networks (DNN), AdaBoost, 
Support Vector Machines (SVM), and XGBoost, using data from 
www.kaggle.com. Results demonstrate XGBoost's superior performance across 
various data splits, emphasizing its effectiveness for stroke prediction. Utilizing 
SHAP provides deeper insights into stroke risk factors, facilitating 
comprehensive risk assessment. Overall, the study contributes to advancing 
stroke detection methodologies and highlights ML's role in enhancing clinical 
practice in stroke medicine. Further research could explore additional datasets 
and advanced ML algorithms to enhance prediction accuracy and preventive 
measures. 
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1. Introduction  

Stroke is a severe medical illness characterized by an abrupt cessation of blood flow to the brain, 

potentially leading to significant neurological deficits and enduring disabilities [1]. Precise and efficient 

stroke diagnosis is crucial for commencing prompt therapy and enhancing patient outcomes. In recent years, 

machine learning (ML) methodologies have surfaced as essential instruments for stroke detection and 

diagnosis, providing the capability for automated and accurate interpretation of neuroimages [2]. ML 

algorithms have been increasingly utilized in healthcare systems, including stroke care, to enhance 

diagnostic accuracy and streamline patient management processes [3].  

A significant body of literature exists on the application of ML in stroke medicine as in [2], [4]–[10], 

highlighting various approaches and methodologies employed for stroke identification, subtype 

classification, severity prediction, and outcome assessment. Studies have utilized diverse ML techniques, 

including natural language processing (NLP), feature selection, and ensemble classifiers, to automate tasks 

such as classifying ischemic stroke subtypes and predicting stroke severity [11]. Additionally, systematic 

reviews have been conducted to assess the effectiveness of ML-based patient classification systems and to 

explore advancements, challenges, and prospects in ML applications in stroke medicine [12]. 

Despite the advancements in ML-based stroke diagnosis and management, several gaps and limitations 
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persist in the existing literature. These include a lack of robust external validation and interpretability of ML 

models [13]. Moreover, many studies have focused on relatively small datasets, potentially limiting the 

generalizability of their findings to broader patient populations [10, 11]. Additionally, there is a need for 

further investigation into the scalability, real-world applicability, and potential biases inherent in ML 

algorithms used for stroke detection and prediction [16]. 

The study aims to compare machine learning models and SHAP (SHapley Additive exPlanations) 

algorithm insights for stroke detection optimization. By leveraging data from sources like Kaggle.com, 

which provides relevant variables such as sex, age, hypertension, heart disease, and smoking status, the 

research evaluates multiple classifiers' performance, including Deep Neural Networks (DNN) [17], 

AdaBoost [18], [19], Support Vector Machines (SVM) [20], Logistic Regression [21], XGBoost [22], Gradient 

Boost Tree [23], and Generalized Additive Models (GAM) [24]. The analysis showcases metrics such as 

precision, recall, F1 score, and accuracy across different training-testing data splits. 

This comparison analysis aims to determine the best effective machine learning model for optimizing 

stroke detection. The research seeks to augment the interpretability and comprehension of model detection 

by the integration of SHAP algorithm insights, hence aiding clinical decision-making and enhancing patient 

outcomes in stroke therapy. Overall, this research contributes to advancing stroke detection methodologies 

and underscores the importance of machine learning in enhancing clinical practice in stroke medicine. 

2. Method 

The proposed research aims to address stroke issues by applying machine learning techniques, 

specifically classification methods. The research methodology encompasses several stages, including data 

preprocessing, model development, evaluation, and analysis of SHAP (SHapley Additive exPlanations)—fig 

1 shows the research methodology used in this research.  

 

 

 

 

 

 

 

 

 

Figure. 1.  Research methodology 

2.1. Dataset 

The dataset under consideration comprises 40,910 entries and encompasses various demographic and 

health-related attributes. It originates from www.kaggle.com [25], a popular datasets and data science 

competition platform. Each entry in the dataset represents an individual and includes the following 

attributes: sex, age, hypertension, heart disease, marital status, work type, residence type, average glucose 

level, BMI (Body Mass Index), smoking status, and stroke occurrence. A detail of table attributes is shown in 

Table 1. 
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Table 1. Dataset Attributes 

Attribute Description 

Sex Gender of the individual (1 for 

male, 0 for female) 

Age Age of the individual in years 

Hypertension Presence (1) or absence (0) of 

hypertension 

Heart Disease Presence (1) or absence (0) of heart 

disease 

Ever Married Marital status (1 for married, 0 for 

unmarried) 

Work Type Type of work the individual is 

engaged in 

Residence Type Type of residence (1 for urban, 0 

for rural) 

Average Glucose 

Level 

The average glucose level in the 

individual's blood 

BMI (Body Mass 

Index) 

Body Mass Index (weight in 

kg/height in  

) 

Smoking Status Smoking status of the individual 

Stroke Occurrence of stroke (1 for yes, 0 

for no) 

2.2. Preprocessing Data 

Preprocessing data entails finding outliers, which are data points that deviate significantly from the rest of 

the dataset and may bias the results. The Interquartile Range (IQR) is a regularly used approach for 

detecting outliers. The IQR is calculated as the difference between the third quartile (Q3) and the first 

quartile (Q1), denoted as bellow [26]. 

 

IQR = Q3 - Q1 

 

It represents the middle 50% of the data and provides a reliable measure of variability. Analysts can define 

an upper limit beyond which data points are considered outliers by splitting the dataset into quartiles and 

calculating the IQR.  

The process of removing outliers involves several key steps. Firstly, box plots are generated to visually 

identify outliers across numerical features concerning the target label, 'stroke'. Subsequently, the upper limit 

for outliers is determined based on each numerical feature's interquartile range (IQR). The maximum 

threshold is 1.5 times the interquartile range above the third quartile (P75) [26]. Data points exceeding this 

upper limit are identified as outliers. Once identified, these outliers are replaced with the upper limit value 

to mitigate their influence on subsequent analyses. Finally, the updated dataset is visualized again using box 

plots to confirm the successful removal of outliers and ensure the integrity of the data for further analysis. 

This recurrent method guarantees the dataset's robustness and reliability, enabling more precise insights into 

the correlation between numerical features and the target variable, 'stroke'. 

2.3. Model Classifier 

This study utilizes a variety of classifier models. Conventional machine learning methodologies, 

including Logistic Regression, Support Vector Machine, AdaBoost, and Generalized Additive Model (GAM), 

were employed. Furthermore, Tree-Based Ensemble Methods such as XGBoost and Gradient Boost Trees, 

together with Deep Learning Neural Networks, were utilized in this study project. These methods 

collectively provide a comprehensive framework for analyzing and modelling complex datasets, allowing 

for a thorough exploration of patterns and relationships within the data. Each method brings unique 
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strengths and characteristics to the analysis, contributing to a holistic understanding of the studied 

phenomena. 

2.3.1. Logistic Regression 

Logistic regression is a supervised learning technique that analyses dependent values by employing 

independent variables from given datasets. It evaluates output values through logistic regression of the 

dependent variables, offering solutions in either absolute or differential forms, which may be numerical or 

binary (e.g., Yes or No, 0 or 1, true or false). While computer-based representations often adopt a binary 

format (0 or 1), logistic regression inherently represents feasible values between 0 and 1. The logistic 

function is denoted as below [4]. 

 
 

Where, . 

 

2.3.2. Support Vector Machine 

The Support Vector Machine (SVM) [27] is a supervised learning technique employed for classification 

and regression applications within machine learning theory. Support Vector Machine (SVM) determines a 

hyperplane with maximum margin using training data to differentiate data into discrete groups or classes 

[28]. This hyperplane is optimally positioned to maximize the distance between the nearest data points of 

any class. Support Vector Machines employ kernel functions to convert data from lower-dimensional spaces, 

which may not be linearly separable, into higher-dimensional spaces. Diverse kernels, such as polynomial, 

Gaussian radial, and exponential radial basis, are employed to calculate the scores of each subject in 

nonlinear contexts. Support Vector Machine (SVM) divides data into categories by utilizing an optimum 

hyperplane and following the principle of structural risk minimization. 

 

2.3.3. AdaBoost 

The AdaBoost algorithm is the most prevalent and often employed ensemble learning approach. The 

method termed "boosting" transforms each weak classifier into a singular, robust classifier. AdaBoost's core 

principle lies in its capacity to produce a weak learner from the initial training set and subsequently modify 

the training set's distribution for each new weak learner iteration based on anticipated performance. The 

subsequent phase will emphasize samples that had low prediction accuracy in preceding rounds. A robust 

learner is established by integrating weaker learners with varying weights [17, 18]. A particular method for 

training a boosted classifier is referred to as AdaBoost. A boosted classifier is represented as below. 

 

 
 

Given an object  as input, each  weak learner produces a value indicating the item's class. In a binary 

classification scenario, the predicted object class is determined by the sign of the weak learner's output, 

while the absolute value reflects the confidence in that classification. Similarly, if the sample is classified as 

belonging to a positive class, the -th classifier is deemed positive; otherwise, it is considered negative. 

 

2.3.4. Generalized Addictive Model (GAM) 

For simulating intricate interactions between predictors and a response variable, Generalized Additive 

Models (GAMs) [31] offer a versatile and potent statistical framework. Because each predictor can have a 
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smooth, non-parametric effect on the response, GAMs, in contrast to typical linear models, can tolerate non-

linear relationships.  The exponential function in GAM is denoted as below [31].  

 

 
 

The functions  may be characterized non-parametrically, semi-parametrically, or as "smooth functions" to 

be estimated by non-parametric methods. Alternatively, the functions may be expressed in a parametric 

form, such as a polynomial or an unpenalized regression spline of a variable. 

Smoothing functions that represent the underlying structure of the data without imposing strict 

assumptions, like splines or kernel functions, are used to do this. Because GAMs show the smooth functions 

of individual predictors, analysts may more easily comprehend the nature of each predictor's influence on 

the response and provide results that are easy to interpret. GAMs also have advantages when managing 

missing values, high-dimensional data, and interactions between predictors. GAMs are especially helpful in 

fields because of these features. 

2.3.5. XGBoost 

By using a Newton-Raphson technique in function space instead of gradient descent, XGBoost functions 

differently from gradient boosting [22]. The Newton-Raphson method employs a second-order Taylor 

approximation of the loss function for connection. There might not be any revolutionary discoveries in 

mathematics, but XGBoost meticulously arranges gradient gain options to guarantee precision and 

efficiency. It combines tree-based and linear approaches, utilizing several AI algorithms to evaluate a new 

tree's dependability for improving model accuracy [7]. For example, it can learn from parallel learning 

(bagging) and random forest (impulsive). Furthermore, methods such as data collection are utilized to 

handle data gaps and expedite the precise processing of sophisticated AI models. These tactics are combined 

to tackle the issue of data gaps. 

2.3.6. Gradient Boost Tree 

An ensemble of decision trees is gradually built using the sophisticated machine learning technique 

known as gradient boosting tree (GBT), with each new tree fixing mistakes caused by the ones that came 

before it. GBT serially develops trees, with each new tree concentrating on capturing the residual mistakes 

left by the preceding trees, in contrast to standard decision tree algorithms that generate trees singly [31], 

[32]. This iterative process continues until the model converges or a certain number of trees are generated. 

The objective of gradient descent optimization, which entails iteratively adjusting model parameters 

towards the steepest descent to minimize a loss function, integrates the benefits of decision trees to 

formulate gradient boosting trees (GBT). Through iterative model refinement based on past iteration 

mistakes, GBT effectively learns complex relationships within the data and can handle both regression and 

classification tasks. This approach results in highly accurate predictive models that are robust to overfitting 

and capable of capturing intricate patterns in the data. 

2.3.7. Deep Neural Network 

Artificial neural networks utilized in machine learning are termed deep learning. Convolutional neural 

networks, deep belief networks, recurrent neural networks, and deep neural networks (DNN) exemplify 

several topologies in deep learning. Neural networks are a class of algorithms designed to identify patterns, 

loosely inspired by the structure of the human brain [7]. These are extensively employed throughout various 

fields of study, including computer vision, gaming, audio recognition, speech recognition, and natural 

language processing. A Deep Neural Network comprises an input layer, several hidden layers, and an 

output layer. The network is trained by backpropagation, which reduces the divergence between the 

expected and actual output. The parameters of the DNN utilized in the research are presented in Table 2. 
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Table 2. Parameter of DNN Used in the Research 

Parameter Value 

Architecture Sequential 

Activation ReLU 

Input shape (Number of features) 

Dropout rate 
0.5 (after each Dense 

layer) 

Number of Dense layers 
3 (including output 

layer) 

Number of units per 

Dense layer 
64, 32, 1 (output layer) 

Output activation Sigmoid 

Optimizer Adam 

Loss function Binary cross-entropy 

Metrics Accuracy 

Number of epochs 10 

Batch size 32 

Validation split 0.1 

2.3.8. Shapley Addictive exPlanations (SHAP) 

A game-theoretic method known as SHapley Additive exPlanations (SHAP) aims to clarify the 

predictions generated by any machine learning model. SHAP connects optimal credit distribution with 

localized explanations by utilizing conventional Shapley values from game theory and their corresponding 

extensions. SHAP, created by [33], is a technique for elaborating on specific forecasts by utilizing the Shapley 

game-theoretically optimal values. In essence, SHAP is a framework for analyzing machine learning model 

results. Its central idea is firmly anchored in SHAP values and cooperative game theory. Unlike other 

approaches, SHAP gives us a thorough grasp of each feature's contributions to the forecasts, promoting 

equity and making. The utility of SHAP lies in its ability to elucidate the significance of each feature in 

shaping predictions. Offering SHAP [34]–[36] values enables a nuanced comprehension of intricate models 

and how input features influence predictions. SHAP details the justification as follows. 

 

 
 

Where   is the SHAP value for feature ii, indicating the contribution of that feature to the prediction,  is a 

subset or coalition of all features is a subset or coalition of all features , excluding feature ,  represents 

the number of features in subset ,  is the model's prediction  when feature  is added to subset . 

2.3.9. Evaluation Metric 

The study utilized diverse evaluation metrics to analyze the efficacy of various classifiers over many 

training and testing data partitions. The assessment metrics include Precision, Recall, F1 Score, and 

Accuracy. Precision measures the ratio of true positive predictions to the total positive predictions generated 

by the classifier. Precision is denoted as below [2], [15], [37]–[40].  

 

 
 

True Positives (TP) denote the count of accurately predicted positive cases, whereas False Positives (FP) 

indicate the count of inaccurately predicted positive instances. 

Recall, also known as Sensitivity or True Positive Rate, is the proportion of true positive predictions 

relative to the total number of actual positive instances in the dataset. Recall is calculated using the formula 
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[2], [15], [37]–[40].  

 

 
 

A False Negative (FN) denotes the quantity of positive cases erroneously classified as negative. 

The F1 Score represents the harmonic mean of Precision and Recall. It equilibrates Precision and Recall 

and is especially advantageous when addressing imbalanced datasets.—the F1 score is calculated as below 

[2], [15], [37]–[40]. 

 
 

Accuracy evaluates the comprehensive correctness of the classifier's predictions. Accuracy measures the 

ratio of accurately predicted cases (including true positives and true negatives) to the total instances in the 

dataset. Accuracy is calculated as below [2], [15], [37]–[40]. 

 

 
 

True Negatives (TN) denotes the quantity of accurately predicted negative situations. 

 

3. Results and Discussion  

3.1. Stroke Dataset 

The examination of the dataset uncovers some significant relationships among its properties. A robust 

positive association of 0.26 exists between hypertension and heart disease, indicating that those with 

hypertension are more predisposed to heart disease. Secondly, there exists a robust positive correlation of 

0.27 between average glucose levels and the occurrence of stroke, which implies that higher average glucose 

levels in the blood may increase the risk of stroke. On a different note, a weak negative correlation of -0.12 is 

identified between gender and age. The issues suggest a slight tendency for younger individuals to be male 

and older individuals to be female within the dataset. Lastly, a weak positive correlation of 0.053 is noted 

between work type and smoking status, which indicates that certain types of employment may slightly 

influence an individual's smoking habits, albeit the effect is not very strong. These correlations provide 

valuable insights into the interrelationships among various factors within the dataset, shedding light on 

potential patterns and associations worth further exploration. Figs. 2 and 3 show the correlation matrix 

between attributes and histograms for each attribute in the dataset used. 

 

3.2. Preprocessing Data 

After conducting preprocessing to identify outliers in the dataset, several key observations emerged. 

Firstly, no outlier records were detected in attributes like age, hypertension, heart disease, ever_married, 

work_type, residence_type, and average glucose level. This absence of outliers suggests a consistent and 

reliable distribution of data across these attributes, enhancing the dataset's suitability for various analyses 

related to cardiovascular health, demographics, and metabolic conditions. However, the attribute BMI 

revealed many outlier records, totaling 915 instances. These outliers signify potential irregularities or 

extreme values in BMI measurements within the dataset. It is essential to address these outliers to maintain 

the accuracy and integrity of analyses concerning obesity, metabolic health, and other health outcomes 

linked to BMI. Figures 4 and 5 show a visualization of the outlier identified after handling preprocessing 

data. 
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Figure 2.  Correlation matrix between attributes in the dataset used 

 

 
Figure 3.  Histogram of each attribute in the dataset used 
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Figure 4.  Visualization of outlier identified in preprocessing data 

 

 

 
Figure 5.  Visualization of outlier after handling in preprocessing data 
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3.3. Model Classifier using various Machine Learning 

Table 3 outlines the results of a study conducted on different classifiers utilizing varying training-to-

testing data ratios. Each classifier's performance is evaluated based on precision, recall, F1 score, and 

accuracy metrics. For instance, in the first scenario with a 90:10 training-to-testing data ratio, diverse 

classifiers were employed, including Deep Neural Network (DNN), AdaBoost, Support Vector Machine 

(SVM), Logistic Regression, XGBoost, Gradient Boost Tree, and Generalized Additive Model (GAM). Each 

classifier's precision, recall, F1 score, and accuracy are presented. This process is repeated for subsequent 

scenarios with different training-to-testing data ratios (80:20 and 70:30), maintaining the same classifiers. The 

study aims to assess how classifier performance varies concerning data availability by systematically altering 

the training-to-testing data ratios as show in Table 3. 

 
Table 3. Performance Analysis and Evaluation 

Train-

testing 

data 

split 

Classifier  Precision Recall F1score Accuracy 

90:10 

DNN 0.701 0.685 0.680 0.685 

AdaBoost 0.744 0.742 0.741 0.742 

SVM 0.654 0.639 0.631 0.639 

Logistic 

regression 
0.684 0.679 0.678 0.679 

XGBoost 0.836 0.836 0.836 0.836 

Gradient 

Boost 

Tree 

0.803 0.802 0.801 0.802 

GAM 0.701 0.697 0.697 0.697 

80:20 

DNN 0.694 0.692 0.691 0.692 

AdaBoost 0.736 0.733 0.733 0.733 

SVM 0.658 0.641 0.633 0.641 

Logistic 

regression 
0.681 0.676 0.675 0.676 

XGBoost 0.802 0.800 0.800 0.800 

Gradient 

Boost 

Tree 

0.841 0.841 0.841 0.841 

GAM 0.699 0.696 0.696 0.696 

70:30 

DNN 0.682 0.680 0.679 0.680 

AdaBoost 0.736 0.734 0.733 0.734 

SVM 0.655 0.641 0.633 0.641 

Logistic 

regression 
0.681 0.677 0.675 0.677 

XGBoost 0.830 0.830 0.830 0.830 

Gradient 

Boost 

Tree 

0.804 0.804 0.804 0.804 

GAM 0.697 0.695 0.694 0.695 

 

Across the board, Tabel 3 shows that XGBoost consistently outperforms other classifiers regarding 

precision, recall, F1 score, and accuracy, showcasing its robustness and effectiveness across different data 

splits. Mainly, in the 90:10, 80:20, and 70:30 training-testing data splits, XGBoost yields precision, recall, F1 

score, and accuracy values of 0.836, 0.802, 0.801, and 0.836; 0.802, 0.841, 0.841, and 0.841; and 0.830, 0.804, 

0.804, and 0.830, respectively. Gradient Boost Tree also demonstrates commendable performance, closely 

following XGBoost, especially in the 80:20 split with precision, recall, F1 score, and accuracy values of 0.841, 

0.841, 0.841, and 0.841, respectively. On the other hand, DNN exhibits competitive performance across all 
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splits, albeit slightly lower than XGBoost and Gradient Boost Tree, indicating its suitability for the task. 

Meanwhile, AdaBoost consistently performs well across different splits, showing stable and reliable 

performance. However, SVM, Logistic Regression, and GAM exhibit comparatively lower performance 

metrics across all splits, suggesting their limitations in capturing the complexities of the underlying data. 

These findings underscore the importance of selecting an appropriate classifier based on the specific 

requirements and characteristics of the dataset, with XGBoost emerging as a top-performing choice in this 

study due to its consistently high performance across various data splits. 

The results obtained from the research align closely with findings from [41], which focus on acute 

stroke detection utilizing machine learning models, particularly XGBoost using brain CT dataset. In both 

studies, XGBoost emerges as a top-performing classifier, showcasing superior accuracy compared to 

alternative models. In [41], proposed XGBoost achieved an accuracy of 97%, outperforming existing models 

such as Random Forest (RF) with 86% accuracy, RF-LTSR with 90% accuracy, RF-HERMES with 89% 

accuracy, BE-FAST with 76% accuracy, and FAST with 80% accuracy. Similarly, in the present analysis, 

XGBoost consistently demonstrates high precision, recall, F1 score, and accuracy across different training-

testing data splits, indicating its robustness and effectiveness in various machine-learning tasks. This 

parallelism underscores the reliability and versatility of XGBoost as a classifier across different domains and 

applications. 

Furthermore, both outcomes highlight the importance of feature selection and preprocessing techniques 

in enhancing model effectiveness. The study highlights the use of hybrid preprocessing techniques and 

altered segmentation methods to enhance picture quality and feature extraction, while the current research 

underlines the importance of comprehending the impact of each feature on model predictions using SHAP 

values. Both methodologies seek to enhance model efficacy by identifying the most pertinent features and 

minimizing noise and extraneous information. The alignment of these studies' findings highlights the 

importance of utilizing advanced machine learning techniques like XGBoost and implementing thorough 

feature selection and preprocessing methods to improve model accuracy and reliability across various 

applications [41]. 

3.4. Shapley Addictive exPlanations (SHAP) for XGBoost and Gradient Boosted Tree 

The next phase of this project concentrates on employing SHAP for XGBoost and Gradient Boosted Tree 

models. The SHAP Summary graphic offers critical insights into the factors influencing stroke prediction, 

clarifying the impact of each parameter on model output via SHAP values displayed on the X-axis. Elevated 

SHAP values indicate significant contributions to forecasts, whilst the Y-axis illustrates essential elements for 

stroke prediction. The caption differentiates these qualities by color, with red signifying increased stroke risk 

and blue showing reduced risk. This work establishes a foundation for a more comprehensive investigation 

of stroke risk factors utilizing SHAP for XGBoost and Gradient Boosted Tree models. The next SHAP 

Summary Plot for both models examine the complex correlation between several features and stroke risk. It 

emphasizes the importance of parameters including average blood glucose, BMI, hypertension, and heart 

disease in assessing stroke risk. Increased blood glucose and BMI levels, in conjunction with hypertension 

and cardiovascular disease, are identified as main risk factors. 

Moreover, age, marital status, occupation, gender, smoking habits, and residential area influence 

stroke risk. Increased age, male sex, and smoking status are linked to a heightened risk, but marital status 

and participation in non-manual labor occupations are correlated with a reduced risk. Significantly, living in 

rural regions is associated with an increased risk of stroke relative to metropolitan areas. These findings 

emphasize the intricate interaction of multiple factors in determining stroke risk and highlight the necessity 

of thorough risk evaluation and focused interventions to reduce stroke occurrence. Figures 6 and 7 illustrate 

the SHAP Summary Plot for XGBoost and Gradient Tree Boosting, respectively.  
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Figure 6.  SHAP Summary Plot for XGBoost model  

 

 
Figure 7.  SHAP Summary Plot for Gradient Tree Boosting model 

4. Conclusion  

The study reveals substantial correlations in the Stroke Dataset, indicating potential risk variables 

such as average glucose levels and heart disease, along with moderate negative relationships between age 

and gender. Furthermore, a slight positive correlation is observed between employment type and smoking 

status. Preprocessing detects outliers, especially in the BMI attribute, highlighting the significance of data 

integrity in analysis concerning metabolic health. XGBoost regularly surpasses competing classifiers across 

diverse data splits, underscoring its efficacy in stroke prediction challenges. These findings underscore the 

importance of feature selection and preprocessing techniques in enhancing model effectiveness. Moreover, 

employing SHAP for XGBoost and Gradient Boosted Tree models yields profound insights into stroke risk 

variables, underscoring the necessity for thorough risk evaluation and focused interventions to reduce 

stroke occurrence. SHAP Summary Plots clearly depict the influence of features on model predictions, 

providing essential insights for subsequent study. 

The research offers valuable insights into stroke prediction through comprehensive analysis of 

datasets, preprocessing techniques, machine learning classifiers, and SHAP interpretations. Future research 

may examine supplementary datasets, optimize preprocessing techniques, and delve further into 

sophisticated machine learning algorithms to improve stroke prediction precision and enable more efficient 

preventive strategies. 
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