Implementation of the Support Vector Machine Method for Sentiment Analysis Using Twitter Data
DOI:
https://doi.org/10.30983/knowbase.v2i2.6019Keywords:
Sentiment Analysis, Support Vector Machine, TwitterAbstract
The development of feminism, which is centered on women all over the world who want to be free of male pressure, oppression, and inequality, has continued to the present day. Various public opinions about feminism are now being expressed on various social media platforms. There has been a long debate about feminism's critics and supporters in terms of equalizing women's intellectual and the role of women in making decisions. Not only that, but the desire to end acts of violence and injustice against women is a form of feminism that is often taken for granted, even in the legal realm. The purpose of this study was to examine public sentiment based on opinions shared on social media. Hashtags related to feminism from social media are the main data that will be used to analyze public opinion sentiments about feminism. In this study, 500 tweets were used, and the data was later separated into positive, negative, and neutral opinions before being analyzed using the Support Vector Machine (SVM) method. The results of this study obtained an accuracy of 72%, indicating that the use of SVM to perform sentiment analysis on Twitter data is quite good.
References
P. Sharma and A. K. Sharma, “Experimental investigation of automated system for twitter sentimen analysis to predict the public emotions using machine learning algorithms,†Mater. Today Proc., no. xxxx, 2020.
G. R. A. & F. L. Gustavo Nogueira de Sousa, “Social Network Advertising Classification Based on Content Categories,†in Lecture Notes in Business Information Processing, vol. 373 LNBIP, 2019, pp. 169–180.
E. Marttila, A. Koivula, and P. Räsänen, “Does excessive media sosial use decrease subjective well-being? A longitudinal analysis of the relationship between problematic use, loneliness and life satisfaction,†Telemat. Informatics, vol. 59, no. August 2020, pp. 1–11, 2021.
T. R. Soomro and M. Hussain, “Media sosial-Related Cybercrimes and Techniques for Their Prevention,†Appl. Comput. Syst., vol. 24, no. 1, pp. 9–17, 2019.
Y. Gorodnichenko, T. Pham, and O. Talavera, “Media sosial, sentimen and public opinions: Evidence from #Brexit and #USElection,†Eur. Econ. Rev., vol. 136, p. 103772, 2021.
E. Kauffmann, J. Peral, D. Gil, A. Ferrández, R. Sellers, and H. Mora, “A framework for big data analytics in commercial social networks: A case study on sentimen analysis and fake review detection for marketing decision-making,†Ind. Mark. Manag., no. July, pp. 1–15, 2019.
A. R. Pathak, “Adaptive model for sentimen analysis of media sosial data using deep learning,†ICICCT 2019 – Syst. Reliab. Qual. Control. Safety, Maint. Manag., pp. 416–423, 2020.
S. M. Ogletree, P. Diaz, and V. Padilla, “What is Feminism? College Students’ Definitions and Correlates,†Curr. Psychol., vol. 38, no. 6, pp. 1576–1589, 2019.
V. Gupta and R. Hewett, “Real-time tweet analytics using hybrid hashtags on twitter big data streams,†Inf., vol. 11, no. 7, 2020.
D. Antonakaki, P. Fragopoulou, and S. Ioannidis, “A survey of Twitter research: Data model, graph structure, sentimen analysis and attacks,†Expert Syst. Appl., vol. 164, no. July 2020, p. 114006, 2021.
R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The impact of features extraction on the sentimen analysis,†Procedia Comput. Sci., vol. 152, pp. 341–348, 2019.
H. Hidayati, “Kesetaraan Gender dalam Pelestarian Lingkungan Perspektif Al-Qur’an,†TAFAKKUR J. Ilmu Al-Qur’an dan …, pp. 186–199, 2021.
K. McLaughlin and S. N. Aikman, “That is What a Feminist Looks Like: Identification and Exploration of the Factors Underlying the Concept of Feminism and Predicting the Endorsement of Traditional Gender Roles,†Gender Issues, vol. 37, no. 2, pp. 91–124, 2020.
M. Tamboukou, “Women Workers’ Education,†p. 961, 2020.
K. Alexeyeff, “Cinderella of the south seas? Virtuous victims, empowerment and other fables of development feminism,†Womens. Stud. Int. Forum, vol. 80, no. April, p. 102368, 2020.
P. Yadav, N. Saville, A. Arjyal, S. Baral, P. Kostkova, and M. Fordham, “A feminist vision for transformative change to disaster risk reduction policies and practices,†Int. J. Disaster Risk Reduct., vol. 54, no. February 2020, p. 102026, 2021.
A. Kumar and G. Garg, “Systematic literature review on context-based sentimen analysis in social multimedia,†Multimed. Tools Appl., vol. 79, no. 21–22, pp. 15349–15380, 2020.
V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentimen analysis of media sosial Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm,†Procedia Comput. Sci., vol. 161, pp. 765–772, 2019.
S. Zheng, S. Dharssi, M. Wu, J. Li, and Z. Lu, “Text mining for drug discovery,†Methods Mol. Biol., vol. 1939, pp. 231–252, 2019.
D. Ariyanti and K. Iswardani, “Teks Mining untuk Klasifikasi Keluhan Masyarakat Pada Pemkot Probolinggo Menggunakan Algoritma Naïve Bayes,†J. IKRA-ITH Inform., vol. 4, no. 3, pp. 125–132, 2020.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),†J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021.
R. Singh and R. Singh, “Applications of sentimen analysis and machine learning techniques in disease outbreak prediction – A review,†Mater. Today Proc., no. xxxx, 2021.
T. Cura, “Use of support vector machines with a parallel local search algorithm for data classification and feature selection,†Expert Syst. Appl., vol. 145, p. 113133, 2020.
M. Birjali, M. Kasri, and A. Beni-Hssane, “A comprehensive survey on sentimen analysis: Approaches, challenges and trends,†Knowledge-Based Syst., vol. 226, p. 107134, 2021.
M. I. Putri and I. Kharisudin, “Penerapan Synthetic Minority Oversampling Technique (SMOTE) Terhadap Analisis Sentimen Data Review Pengguna Aplikasi Marketplace Tokopedia,†Prism. Pros. Semin. Nas. Mat., vol. 5, pp. 759–766, 2022.
M. D. Prasetio, R. Y. Xavier, H. Rachmat, W. Wiyono, and D. S. E. Atmaja, “Sentimen analysis on myindihome user reviews using support vector machine and naïve bayes classifier method,†Int. J. Ind. Optim., vol. 2, no. 2, p. 141, 2021.
F. Fitriana, E. Utami, and H. Al Fatta, “Analisis Sentimen Opini Terhadap Vaksin Covid - 19 pada Media Sosial Twitter Menggunakan Support Vector Machine dan Naive Bayes,†J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 19–25, 2021.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).