Integration of Machine Learning and Web-Based Expert Systems for Diabetes Risk Analysis in Pagar Alam

Authors

  • Riduan Syahri Institut Teknologi Pagar Alam, Indonesia
  • Desi Puspita Institut Teknologi Pagar Alam, Indonesia
  • Risnaini Masdalipa Institut Teknologi Pagar Alam, Indonesia

DOI:

https://doi.org/10.30983/knowbase.v5i2.10268

Keywords:

Machine Learning, Expert system, data analyst, Diabetes Machine Learning Expert System Genomics CRISP-DM SVM, Diabetes, Machine Learning, Expert System,Genomics, CRISP-DM, SVM

Abstract

This study aims to develop an integrated system combining Machine Learning (ML) and a Web-Based Expert System for genomic and clinical data analysis to mitigate the rising diabetes cases in Pagar Alam City. The research adopts the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology, encompassing business understanding, data understanding, data preparation, modeling, evaluation, and deployment phases. Unlike previous studies relying on standard public datasets, this research integrates genomic profiles (TCF7L2 and KCNQ1 SNPs) alongside local clinical parameters from five sub-districts in Pagar Alam. Quantitative data from 640 samples were analyzed using the Support Vector Machine (SVM) algorithm. Evaluation results during the modeling phase show that the SVM model achieved a superior accuracy of 99.07%, demonstrating that integrating genomic data significantly enhances predictive precision. The web-based expert system implemented in the deployment phase provides personalized prevention recommendations based on individual risk profiles. This application is expected to serve as a strategic tool for the Pagar Alam government to enhance the effectiveness of prevention programs through localized and genetic-based interventions.

References

BPS Provinsi Sumatera Selatan. (2024). Jumlah Kasus Penyakit Menurut Jenis Penyakit (Kasus), 2021-2023.

BPS Provinsi Sumatera Selatan. (2024). Jumlah Rumah Sakit Umum, Rumah Sakit Khusus, Puskesmas, Klinik Pratama, dan Posyandu Menurut Kabupaten/Kota di Provinsi Sumatera Selatan, 2023.

Astuti VW, Tasman T, Amri LF. (2021). Prevalensi dan analisis faktor risiko hipertensi di Wilayah Kerja Puskesmas Nanggalo Padang. Berkala Ilmiah Mahasiswa Ilmu Keperawatan Indonesia, 9(1), 1-9.

Firdiawan A, Fadhilah R, Imanda YL, Nurleni N. (2022). Pola Penggunaan Obat Dan Karakteristik Pasien Diabetes Melitus Tipe 2 Rawat Inap Di Rumah Sakit Siti Fatimah Sumatera Selatan. Jurnal Ilmiah Bakti Farmasi, 7(2).

Cole JB, Florez JC. (2020). Genetics of diabetes mellitus and diabetes complications. Nature Reviews Nephrology, 16(7), 377-390.

Syahfitri RI. (2024). Analisis Genomik dalam Identifikasi Pola Respon Terapi Kanker Payudara: Pendekatan Personalisasi dalam Pengobatan Kanker. Wellness Jurnal Kesehatan dan Pelayanan Masyarakat, 1(1), 13-18.

Montesinos López OA, Montesinos López A, Crossa J. Overfitting, model tuning, and evaluation of prediction performance. InMultivariate statistical machine learning methods for genomic prediction 2022 Jan 14 (pp. 109-139). Cham: Springer International Publishing

Chou CY, Hsu DY, Chou CH. (2023). Predicting the onset of diabetes with machine learning methods. Journal of Personalized Medicine, 13(3), 406.

Montesinos López OA, Montesinos López A, Crossa J. Overfitting, model tuning, and evaluation of prediction performance. InMultivariate statistical machine learning methods for genomic prediction 2022 Jan 14 (pp. 109-139). Cham: Springer International Publishing.

Soni, M., & Varma, S. (2020). Diabetes prediction using machine learning techniques. International Journal of Engineering Research & Technology (IJERT), 9(9), 921-925.

Sharafi S, Hassanpour H. (2022). Comparison of Machine Learning Algorithms for Diabetes Prediction using Genomic Data. Journal of Medical Systems, 46(10).

Sari Y, Subianto M, Rahman M. (2023). Analisis Komparatif Algoritma Klasifikasi Machine Learning untuk Prediksi Diabetes: Studi Kasus Data Klinis dan Genetik. Jurnal Teknologi Informasi dan Komunikasi, 12(1).

Purnamawati A, Nugroho W, Putri D, Hidayat WF. (2020). Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree, Random Forest, Naïve Bayes, SVM dan KNN. InfoTekJar J. Nas. Inform. dan Teknol. Jar., 5(1), 212-215.

Rani, K. J. (2020). Diabetes prediction using machine learning. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6(4), 294-305.

Azhari MF, Fajriyah R. (2024). Idektifikasi Gen Marker Pbmcs Ischemic Stroke Menggunakan Analisis Bioinformatika dan Support Vector Machine. Jurnal TIMES, 13(1), 73-81.

Pradhan A, Sahu C. (2021). A Systematic Review of Machine Learning Techniques for Diabetes Prediction. Journal of Healthcare Engineering, 2021. (Hipotesis: SCOPUS)

Dewi T, Setiawan H. (2023). Peningkatan Akurasi Prediksi Diabetes Menggunakan Algoritma Random Forest pada Data Genomik dengan Seleksi Fitur Gini Importance. Jurnal Rekayasa Informasi, 15(2).

Fernández-Delgado M, Cernadas E, Barro S, Amorim D. (2021). Addressing the Class Imbalance Problem with SMOTE-Based Approaches: A Comparative Study. Expert Systems with Applications, 175.

Johnson J M, Khoshgoftaar T M. (2020). Survey on the use of SMOTE for Class Imbalance Learning. Journal of Big Data, 7(1).

Rasyid HA, Handayani P. (2022). Optimasi Teknik SMOTE untuk Peningkatan Performa Klasifikasi Penyakit Jantung pada Dataset Tidak Seimbang. Jurnal Informatika, 16(3).

Lestari D, Wibowo A. (2023). Pengaruh Berbagai Varian SMOTE (ADASYN, Borderline) terhadap Akurasi Prediksi Diabetes Mellitus Tipe 2. Jurnal Komputasi Terapan, 7(1).

Wang Q, Zhang G, Liu Y. (2024). Comprehensive Evaluation of Sampling Techniques for Imbalanced Medical Datasets. IEEE Journal of Biomedical and Health Informatics, 28(2).

Utami YP, Triayudi A, Handayani EE. (2021). Sistem pakar deteksi penyakit diabetes mellitus (dm) menggunakan metode forward chaining dan certainty factor berbasis android. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 5(1), 49-55.

Mojrian, S., Pinter, G., Joloudari, J. H., Felde, I., Szabo-Gali, A., Nadai, L., & Mosavi, A. (2020, October). Hybrid machine learning model of extreme learning machine radial basis function for breast cancer detection and diagnosis; a multilayer fuzzy expert system. In 2020 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 1-7). IEEE.

Nawangnugraeni DA. (2021). Sistem pakar berbasis android untuk diagnosis diabetes melitus dengan metode forward chaining. Komputika: Jurnal Sistem Komputer, 10(1), 19-27.

Sirait DA, Sitohang S. (2023). Perancangan Sistem Pakar dengan Metode Forward Chaining untuk Mendiagnosis Penyakit Diabetes Berbasis Web. Computer and Science Industrial Engineering (COMASIE), 9(2).

Syahri R, Gusmaliza D, Masdalipa D. (2021). Sistem Pakar Diagnosis Penyakit Ayam Broiler Berbasis Web. Jurnal Pengembangan Sistem Informasi dan Informatika, 2.

Wulandari S, Kridalaksana AH, Khairina DM. (2020). Sistem Pakar Penerapan Menu Gizi Pada Penderita Jantung Koroner Menggunakan Metode Teorema Bayes. Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, 15(1), 1-7.

Agustina N, Purwanto M. (2024). Integrating Machine Learning Prediction with Rule-Based Expert System for Clinical Decision Support in Primary Healthcare. International Journal of Medical Informatics, 185.

Almeida F. (2018). Strategies to perform a mixed methods study. European Journal of Education Studies.

Nayyar, A., Gadhavi, L., & Zaman, N. (2021). Machine learning in healthcare: review, opportunities and challenges. Machine learning and the internet of medical things in healthcare, 23-45.

Letunic I, Khedkar S, Bork P. (2021). SMART: recent updates, new developments and status in 2020. Nucleic acids research, 49(D1), D458-D460.

Habehh, H., & Gohel, S. (2021). Machine learning in healthcare. Current genomics, 22(4), 291-300.

Smith J, Williams K. (2022). Ethical Considerations in Deploying AI for Genomic Health Prediction. Journal of Medical Ethics, 48(4)

Handayani S, Prasetio B. (2023). Tantangan dan Strategi Adopsi Teknologi Digital di Puskesmas Wilayah 3T Indonesia. Jurnal Kesehatan Masyarakat Nasional, 17(1).

Wibowo E, Santoso A. (2024). Studi Komparatif Metode Imputasi Data Hilang pada Dataset Kesehatan. Jurnal Statistika Terapan, 5(2).

Mulyadi R, Sari R. (2021). Implementasi Teknik Pseudonimisasi Data Pasien untuk Kepatuhan Etika Penelitian Kesehatan. Jurnal Keamanan Siber dan Forensik, 6(3).

Hasan, M. K., Alam, M. A., Das, D., Hossain, E., & Hasan, M. (2020). Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access, 8, 76516-76531.

Downloads

Published

2025-12-31

How to Cite

Syahri, R., Puspita, D., & Masdalipa, R. (2025). Integration of Machine Learning and Web-Based Expert Systems for Diabetes Risk Analysis in Pagar Alam. Knowbase : International Journal of Knowledge in Database, 5(2), 206–217. https://doi.org/10.30983/knowbase.v5i2.10268

Citation Check