Integration of Machine Learning and Web-Based Expert Systems for Diabetes Risk Analysis in Pagar Alam
DOI:
https://doi.org/10.30983/knowbase.v5i2.10268Keywords:
Machine Learning, Expert system, data analyst, Diabetes Machine Learning Expert System Genomics CRISP-DM SVM, Diabetes, Machine Learning, Expert System,Genomics, CRISP-DM, SVMAbstract
This study aims to develop an integrated system combining Machine Learning (ML) and a Web-Based Expert System for genomic and clinical data analysis to mitigate the rising diabetes cases in Pagar Alam City. The research adopts the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology, encompassing business understanding, data understanding, data preparation, modeling, evaluation, and deployment phases. Unlike previous studies relying on standard public datasets, this research integrates genomic profiles (TCF7L2 and KCNQ1 SNPs) alongside local clinical parameters from five sub-districts in Pagar Alam. Quantitative data from 640 samples were analyzed using the Support Vector Machine (SVM) algorithm. Evaluation results during the modeling phase show that the SVM model achieved a superior accuracy of 99.07%, demonstrating that integrating genomic data significantly enhances predictive precision. The web-based expert system implemented in the deployment phase provides personalized prevention recommendations based on individual risk profiles. This application is expected to serve as a strategic tool for the Pagar Alam government to enhance the effectiveness of prevention programs through localized and genetic-based interventions.
References
BPS Provinsi Sumatera Selatan. (2024). Jumlah Kasus Penyakit Menurut Jenis Penyakit (Kasus), 2021-2023.
BPS Provinsi Sumatera Selatan. (2024). Jumlah Rumah Sakit Umum, Rumah Sakit Khusus, Puskesmas, Klinik Pratama, dan Posyandu Menurut Kabupaten/Kota di Provinsi Sumatera Selatan, 2023.
Astuti VW, Tasman T, Amri LF. (2021). Prevalensi dan analisis faktor risiko hipertensi di Wilayah Kerja Puskesmas Nanggalo Padang. Berkala Ilmiah Mahasiswa Ilmu Keperawatan Indonesia, 9(1), 1-9.
Firdiawan A, Fadhilah R, Imanda YL, Nurleni N. (2022). Pola Penggunaan Obat Dan Karakteristik Pasien Diabetes Melitus Tipe 2 Rawat Inap Di Rumah Sakit Siti Fatimah Sumatera Selatan. Jurnal Ilmiah Bakti Farmasi, 7(2).
Cole JB, Florez JC. (2020). Genetics of diabetes mellitus and diabetes complications. Nature Reviews Nephrology, 16(7), 377-390.
Syahfitri RI. (2024). Analisis Genomik dalam Identifikasi Pola Respon Terapi Kanker Payudara: Pendekatan Personalisasi dalam Pengobatan Kanker. Wellness Jurnal Kesehatan dan Pelayanan Masyarakat, 1(1), 13-18.
Montesinos López OA, Montesinos López A, Crossa J. Overfitting, model tuning, and evaluation of prediction performance. InMultivariate statistical machine learning methods for genomic prediction 2022 Jan 14 (pp. 109-139). Cham: Springer International Publishing
Chou CY, Hsu DY, Chou CH. (2023). Predicting the onset of diabetes with machine learning methods. Journal of Personalized Medicine, 13(3), 406.
Montesinos López OA, Montesinos López A, Crossa J. Overfitting, model tuning, and evaluation of prediction performance. InMultivariate statistical machine learning methods for genomic prediction 2022 Jan 14 (pp. 109-139). Cham: Springer International Publishing.
Soni, M., & Varma, S. (2020). Diabetes prediction using machine learning techniques. International Journal of Engineering Research & Technology (IJERT), 9(9), 921-925.
Sharafi S, Hassanpour H. (2022). Comparison of Machine Learning Algorithms for Diabetes Prediction using Genomic Data. Journal of Medical Systems, 46(10).
Sari Y, Subianto M, Rahman M. (2023). Analisis Komparatif Algoritma Klasifikasi Machine Learning untuk Prediksi Diabetes: Studi Kasus Data Klinis dan Genetik. Jurnal Teknologi Informasi dan Komunikasi, 12(1).
Purnamawati A, Nugroho W, Putri D, Hidayat WF. (2020). Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree, Random Forest, Naïve Bayes, SVM dan KNN. InfoTekJar J. Nas. Inform. dan Teknol. Jar., 5(1), 212-215.
Rani, K. J. (2020). Diabetes prediction using machine learning. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6(4), 294-305.
Azhari MF, Fajriyah R. (2024). Idektifikasi Gen Marker Pbmcs Ischemic Stroke Menggunakan Analisis Bioinformatika dan Support Vector Machine. Jurnal TIMES, 13(1), 73-81.
Pradhan A, Sahu C. (2021). A Systematic Review of Machine Learning Techniques for Diabetes Prediction. Journal of Healthcare Engineering, 2021. (Hipotesis: SCOPUS)
Dewi T, Setiawan H. (2023). Peningkatan Akurasi Prediksi Diabetes Menggunakan Algoritma Random Forest pada Data Genomik dengan Seleksi Fitur Gini Importance. Jurnal Rekayasa Informasi, 15(2).
Fernández-Delgado M, Cernadas E, Barro S, Amorim D. (2021). Addressing the Class Imbalance Problem with SMOTE-Based Approaches: A Comparative Study. Expert Systems with Applications, 175.
Johnson J M, Khoshgoftaar T M. (2020). Survey on the use of SMOTE for Class Imbalance Learning. Journal of Big Data, 7(1).
Rasyid HA, Handayani P. (2022). Optimasi Teknik SMOTE untuk Peningkatan Performa Klasifikasi Penyakit Jantung pada Dataset Tidak Seimbang. Jurnal Informatika, 16(3).
Lestari D, Wibowo A. (2023). Pengaruh Berbagai Varian SMOTE (ADASYN, Borderline) terhadap Akurasi Prediksi Diabetes Mellitus Tipe 2. Jurnal Komputasi Terapan, 7(1).
Wang Q, Zhang G, Liu Y. (2024). Comprehensive Evaluation of Sampling Techniques for Imbalanced Medical Datasets. IEEE Journal of Biomedical and Health Informatics, 28(2).
Utami YP, Triayudi A, Handayani EE. (2021). Sistem pakar deteksi penyakit diabetes mellitus (dm) menggunakan metode forward chaining dan certainty factor berbasis android. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 5(1), 49-55.
Mojrian, S., Pinter, G., Joloudari, J. H., Felde, I., Szabo-Gali, A., Nadai, L., & Mosavi, A. (2020, October). Hybrid machine learning model of extreme learning machine radial basis function for breast cancer detection and diagnosis; a multilayer fuzzy expert system. In 2020 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 1-7). IEEE.
Nawangnugraeni DA. (2021). Sistem pakar berbasis android untuk diagnosis diabetes melitus dengan metode forward chaining. Komputika: Jurnal Sistem Komputer, 10(1), 19-27.
Sirait DA, Sitohang S. (2023). Perancangan Sistem Pakar dengan Metode Forward Chaining untuk Mendiagnosis Penyakit Diabetes Berbasis Web. Computer and Science Industrial Engineering (COMASIE), 9(2).
Syahri R, Gusmaliza D, Masdalipa D. (2021). Sistem Pakar Diagnosis Penyakit Ayam Broiler Berbasis Web. Jurnal Pengembangan Sistem Informasi dan Informatika, 2.
Wulandari S, Kridalaksana AH, Khairina DM. (2020). Sistem Pakar Penerapan Menu Gizi Pada Penderita Jantung Koroner Menggunakan Metode Teorema Bayes. Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, 15(1), 1-7.
Agustina N, Purwanto M. (2024). Integrating Machine Learning Prediction with Rule-Based Expert System for Clinical Decision Support in Primary Healthcare. International Journal of Medical Informatics, 185.
Almeida F. (2018). Strategies to perform a mixed methods study. European Journal of Education Studies.
Nayyar, A., Gadhavi, L., & Zaman, N. (2021). Machine learning in healthcare: review, opportunities and challenges. Machine learning and the internet of medical things in healthcare, 23-45.
Letunic I, Khedkar S, Bork P. (2021). SMART: recent updates, new developments and status in 2020. Nucleic acids research, 49(D1), D458-D460.
Habehh, H., & Gohel, S. (2021). Machine learning in healthcare. Current genomics, 22(4), 291-300.
Smith J, Williams K. (2022). Ethical Considerations in Deploying AI for Genomic Health Prediction. Journal of Medical Ethics, 48(4)
Handayani S, Prasetio B. (2023). Tantangan dan Strategi Adopsi Teknologi Digital di Puskesmas Wilayah 3T Indonesia. Jurnal Kesehatan Masyarakat Nasional, 17(1).
Wibowo E, Santoso A. (2024). Studi Komparatif Metode Imputasi Data Hilang pada Dataset Kesehatan. Jurnal Statistika Terapan, 5(2).
Mulyadi R, Sari R. (2021). Implementasi Teknik Pseudonimisasi Data Pasien untuk Kepatuhan Etika Penelitian Kesehatan. Jurnal Keamanan Siber dan Forensik, 6(3).
Hasan, M. K., Alam, M. A., Das, D., Hossain, E., & Hasan, M. (2020). Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access, 8, 76516-76531.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Riduan Syahri, Desi Puspita, Risnaini Masdalipa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

