Classification of Referral Decision Recommendations in Community Health Centers Using the K-Nearest Neighbor Approach
DOI:
https://doi.org/10.30983/knowbase.v5i2.10137Keywords:
Classification, Decision Support SystemAbstract
management, including determining patient referral decisions at community health
centers. However, these decisions often still depend on the subjective assessment of
medical personnel, resulting in an inaccurate and ineffective process of identifying
diabetes patient management. The purpose and objective of this research and
development is to identify diabetes patient management for referral decision
recommendations at Puskesmas using the K-Nearest Neighbor (KNN) approach to
obtain a more accurate and effective process and results so that Puskesmas can more
quickly provide appropriate follow-up based on patient laboratory test results. The
data used in this study was diabetes patient data at Puskesmas, using variables such
as age, systolic and diastolic blood pressure, glucose tests, and referral to hospitals as
the target class. The results of the research and classification evaluation using the
Confusion Matrix in KNN modeling based on this data showed that the number of
patients included in TP=41, TN=38, FP=1, and FN=4, with an accuracy of 94.02%,
precision of 97.62%, recall of 91.11%, and F1-Score of 94.25%. These values are
categorized as very good because they are able to predict classes correctly at the
modeling stage. Thus, this study is considered feasible as a support for referral
decision recommendations in identifying the treatment of diabetic patients at
Puskesmas
References
A. Oktaviana, D. P. Wijaya, A. Pramuntadi, and D. Heksaputra, “Prediksi Penyakit Diabetes Melitus Tipe 2 Menggunakan Algoritma K-Nearest Neighbor (K-NN),” Inst. Ris. dan Publ. Indones., vol. 4, no. 3, pp. 812–818, 2024, doi: 10.57152.
H. A. D. Fasnuari, H. Yuana, and M. T. Chulkamdi, “PENERAPAN ALGORITMA K-NEAREST NEIGHBOR UNTUK KLASIFIKASI PENYAKIT DIABETES MELITUS: STUDI KASUS : WARGA DESA JATITENGAH,” Antivirus J. Ilm. Tek. Inform., no. Vol 16 No 2 (2022): November 2022, pp. 133–142, 2022.
Menteri Kesehatan Republik Indonesia, “PEDOMAN NASIONAL PELAYANAN KEDOKTERAN TATA LAKSANA DIABETES MELITUS TIPE 2 DEWASA,” p. 183, 2020.
M. Z. Deny jollyta, william Ramadhan, Konsep Data Mining dan Penerapan, Pertama. Deepublish, 2020.
S. J. Gellysa Urva, Desyanti, Isa Albanna, Muchamad Sobri Sungkar, I Made Agus Oka Gunawan, Iwan Adhicandra, Sahrul Ramadhan, Rifky Lana Rahardian, Herlawati, Rahmadya Trias Handayanto, Anak Agung Gede Bagus Ariana, Hartatik, Prima Dina Atika, “PENERAPAN DATA MINING DI BERBAGAI BIDANG : Konsep, Metode, dan Studi Kasus,” PT. Sonpedia Publishing Indonesia, 2023. .
B. Budiman, “Perbandingan Algoritma Klasifikasi Data Mining untuk Penelusuran Minat Calon Mahasiswa Baru,” Nuansa Inform., vol. 15, no. 2, pp. 37–52, 2021, doi: 10.25134/nuansa.v15i2.4162.
I. H. Witten, E. Frank, and M. A. Hall, Data Mining. 2023.
Z. Setiawan et al., BUKU AJAR DATA MINING. PT. Sonpedia Publishing Indonesia, 2023.
F. Sodik and I. Kharisudin, “Analisis Sentimen dengan SVM , NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter,” Prisma, vol. 4, pp. 628–634, 2021.
L. Nur Aziza, R. Yuli Astuti, B. Akbar Maulana, and N. Hidayati, “Application of the K-Nearest Neighbor Algorithm for Food Security Classification in Central Java Province,” MALCOM Indones. J. Mach. Learn. Comput. Sci. J., vol. 4, no. 2, pp. 404–412, 2024, [Online]. Available: https://journal.irpi.or.id/index.php/malcom/article/view/1201%0Ahttps://journal.irpi.or.id/index.php/malcom/article/download/1201/553.
M. A. Afrianto and M. Wasesa, “Booking Prediction Models for Peer-to-peer Accommodation Listings using Logistics Regression, Decision Tree, K-Nearest Neighbor, and Random Forest Classifiers,” J. Inf. Syst. Eng. Bus. Intell., vol. 6, no. 2, p. 123, 2020, doi: 10.20473/jisebi.6.2.123-132.
N. Benayad, Z. Soumaya, B. D. Taoufiq, and A. Abdelkrim, “Features selection by genetic algorithm optimization with k-nearest neighbour and learning ensemble to predict Parkinson disease,” vol. 12, no. 2, pp. 1982–1989, 2022, doi: 10.11591/ijece.v12i2.pp1982-1989.
N. Buslim, L. K. Oh, M. H. Athallah Hardy, and Y. Wijaya, “Comparative Analysis of KNN, Naïve Bayes and SVM Algorithms for Movie Genres Classification Based on Synopsis.,” J. Tek. Inform., vol. 15, no. 2, pp. 169–177, 2022, doi: 10.15408/jti.v15i2.29302.
N. Wiliani and N. Fathurrahman, Identifikasi Cacat pada Permukaan Mobil Menggunakan Metode K-Nearest Neighbors. Penerbit NEM, 2024.
N. S. N. Az-zahrani, H. K. A. Eloi, F. Salim, A.-Z. A. Ramadhani, C. Meysyanti, and L. N. A. Purwantiningsih, Python untuk Analisis Data. SIEGA Publisher, 2025.
D. Trianda, D. Hartama, and S. Solikhun, “Comparison of Hyperparameter Tuning Methods for Optimizing K-Nearest Neighbor Performance in Predicting Hypertension Risk,” J. Tek. Inform., vol. 18, no. 1, pp. 111–121, 2025, doi: 10.15408/jti.v18i1.42260.
G. Liu, H. Zhao, F. Fan, G. Liu, Q. Xu, and S. Nazir, “An Enhanced Intrusion Detection Model Based on Improved kNN in WSNs,” Sensors, vol. 22, no. 4, pp. 1–18, 2022, doi: 10.3390/s22041407.
A. S. Nasution, A. Alvin, A. T. Siregar, and M. S. Sinaga, “KNN Algorithm for Identification of Tomato Disease Based on Image Segmentation Using Enhanced K-Means Clustering,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, 2022, doi: 10.22219/kinetik.v7i3.1486.
M. K. Mayangsari, I. Syarif, and A. Barakbah, “Evaluation of Stratified K-Fold Cross Validation for Predicting Bug Severity in Game Review Classification,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 277–288, 2023, doi: 10.22219/kinetik.v8i3.1740.
M. O. Khairandish, M. Sharma, V. Jain, J. M. Chatterjee, and N. Z. Jhanjhi, “A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images,” Irbm, vol. 43, no. 4, pp. 290–299, 2022, doi: 10.1016/j.irbm.2021.06.003.
S. U. Hassan, J. Ahamed, and K. Ahmad, “Analytics of machine learning-based algorithms for text classification,” Sustain. Oper. Comput., vol. 3, no. February, pp. 238–248, 2022, doi: 10.1016/j.susoc.2022.03.001.
I. Fajri et al., Data Mining. Serasi Media Teknologi, 2024.
P. P. Allorerung, A. Erna, M. Bagussahrir, and S. Alam, “Analisis Performa Normalisasi Data untuk Klasifikasi K-Nearest Neighbor pada Dataset Penyakit,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 9, no. 3, pp. 178–191, 2024, doi: 10.14421/jiska.2024.9.3.178-191.
S. Zhang, “Challenges in KNN Classification,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 10, pp. 4663–4675, 2022, doi: 10.1109/TKDE.2021.3049250.
J. L. Leevy, J. M. Johnson, J. Hancock, and T. M. Khoshgoftaar, “Threshold optimization and random undersampling for imbalanced credit card data,” J. Big Data, vol. 10, no. 1, 2023, doi: 10.1186/s40537-023-00738-z.
J. J. Pangaribuan, A. Maulana, and R. Romindo, “Unleashing the Power of Svm and Knn: Enhanced Early Detection of Heart Disease,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 2, pp. 342–351, 2024, doi: 10.33480/jitk.v10i2.5719.
W. E. Susanto and D. Riana, “Komparasi Algoritma,” J. Speed, vol. 8, no. 3, pp. 18–27, 2016.
Y. Yustikasari, H. Mubarok, and R. Rianto, “Comparative Analysis Performance of K-Nearest Neighbor Algorithm and Adaptive Boosting on the Prediction of Non-Cash Food Aid Recipients,” Sci. J. Informatics, vol. 9, no. 2, pp. 205–217, 2022, doi: 10.15294/sji.v9i2.32369.
A. Fahmi Limas, R. Rosnelly, and A. Nursie, “A Comparative Analysis on the Evaluation of KNN and SVM Algorithms in the Classification of Diabetes,” Sci. J. Informatics, vol. 10, no. 3, p. 251, 2023, doi: 10.15294/sji.v10i3.44269.
M. R. Siregar, D. Hartama, and S. Solikhun, “Optimizing the Knn Algorithm for Classifying Chronic Kidney Disease Using Gridsearchcv,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 3, pp. 680–689, 2025, doi: 10.33480/jitk.v10i3.6214.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Leny Ningrum, Nisrina Salsabila

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

