Implementation of the C4.5 Algorithm to Build A Prediction Model for Student Success in Database Courses
DOI:
https://doi.org/10.30983/knowbase.v5i2.10083Keywords:
Algoritma C4.5, Data Mining, Model Prediksi, Decision Tree, Keberhasilan Mahasiswa, C4.5 Algorithm, Education Data Mining, Prediction Model, Decision Tree, Student SuccessAbstract
This study aims to implement the C4.5 algorithm to build a model for predicting student success in database system courses in the Informatics and Computer Engineering Education study program at UIN Sjech M. Djamil Djambek Bukittinggi. Using the Knowledge Discovery in Database (KDD) approach, this study includes the stages of data selection, cleaning, transformation, modeling, and evaluation. Secondary data from the academic information system of students enrolled from 2018 to 2023 included 1,177 entries, which after cleaning resulted in 1,030 valid data. Predictor attributes consisted of academic factors such as Algorithm Logic scores, 1st semester Grade Point Average (GPA), attendance, and credit load, as well as non-academic factors such as gender and UKT (Tuition Fee Category). The target variable was student success status. Modeling was performed using Altair RapidMiner 2025 software with the C4.5 algorithm, resulting in a decision tree model. Evaluation showed an accuracy of 82.10%, recall of 69.58%, and precision of 62.51%, indicating the algorithm's effectiveness in classifying students as potentially successful or unsuccessful. This model identifies the most influential attributes, both academic and non-academic, on student success. Overall, the application of the C4.5 algorithm supports Educational Data Mining (EDM) in higher education, helping study programs improve the quality of learning and the effectiveness of data-based academic interventions.
References
M. Yağcı, “Educational data mining: prediction of students’ academic performance using machine learning algorithms,” Smart Learn. Environ., vol. 9, no. 1, 2022, doi: 10.1186/s40561-022-00192-z.
I. Iddrus and D. W. Sari, “Penerapan Data Mining Menggunakan Algoritma Decision Tree C4.5 Untuk Memprediksi Mahasiswa Drop Out Di Universitas Wiraraja,” J. Adv. Res. Inform., vol. 1, no. 02, pp. 1–7, 2023, doi: 10.24929/jars.v1i02.2684.
Y. E. Yuspita, R. Okra, and M. Rezeki, “PENERAPAN ALGORITMA KLASIFIKASI UNTUK PREDIKSI TINGKAT KELULUSAN MAHASISWA MENGGUNAKAN RAPPIDMINER,” Djtechno J. Teknol. Inf., vol. 6, no. 1, pp. 376–388, 2025.
M. P. Colpo, T. Thompsen Primo, M. S. de Aguiar, and C. Cechinel, Educational Data Mining for Dropout Prediction: Trends, Opportunities, and Challenges, vol. 32. 2024. doi: 10.5753/rbie.2024.3559.
V. Fitriyanti, G. Testiana, and C. Eri Gunawan, “Klasifikasi Predikat Kelulusan Mahasiswa Menggunakan Algoritma C4.5,” J. SAINTEKOM, vol. 14, no. 2, pp. 217–232, 2024, doi: 10.33020/saintekom.v14i2.626.
S. Sarker, M. K. Paul, S. T. H. Thasin, and M. A. M. Hasan, “Analyzing students’ academic performance using educational data mining,” Comput. Educ. Artif. Intell., vol. 7, no. December 2023, p. 100263, 2024, doi: 10.1016/j.caeai.2024.100263.
A. W. Wicaksono and T. Setiadi, “Penerapan Klasifikasi Decision Tree (C4.5) untuk Memprediksi Kelulusan Siswa Sekolah Dasar di Kecamatan Juai,” Format J. Ilm. Tek. Inform., vol. 12, no. 2, p. 151, 2023, doi: 10.22441/format.2023.v12.i2.008.
M. Algoritma et al., “Jurnal Processor Klasifikasi Pemilihan Siswa untuk Rekomendasi Beasiswa,” vol. 20, no. 1, pp. 17–29, 2025.
I. W. M. Putri, R. Rusdah, L. Suryadi, and D. Anubhakti, “Prediction of Graduation for Students at the ISB Atma Luhur Faculty of Information Technology Using the C4.5 Algorithm,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 3, pp. 363–369, 2023, doi: 10.32736/sisfokom.v12i3.1731.
V. N. Juli, D. A. Putri, N. S. Prianita, and E. Rilvani, “Penerapan Metode C4 . 5 dan K-Nearest Neighbor untuk Klasifikasi Kelulusan Mahasiswa Berdasarkan Data Akademik,” vol. 3, no. 4, pp. 226–267, 2025, doi: https://doi.org/10.61132/jupiter.v3i4.1032.
S. Aminah and Y. Yadi, “Application of the C4.5 Algorithm for Predicting Students’ Learning Styles Based on Somatic, Auditory, Visual, and Intellectual Models,” Sinkron, vol. 8, no. 4, pp. 2163–2171, 2024, doi: 10.33395/sinkron.v8i4.14032.
U. Al Faruq, M. Ainun Naja Fauzi, I. Fatayasya, E. Daniati, A. Ristyawan, and N. PGRI Kediri, “Prediksi Data Kelulusan Mahasiswa Dengan Metode Decision Tree menggunakan Rapidminer,” in Agustus, 2023, pp. 131–138. [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/%0APrediksi
Rovidatul, Y. Yunus, and G. W. Nurcahyo, “Perbandingan algoritma c4.5 dan naive bayes dalam prediksi kelulusan mahasiswa,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 193–199, 2023, doi: 10.37859/coscitech.v4i1.4755.
Y. Duan, “A Study of Prediction Accuracy of English Test Performance Using Data Mining and Analysis,” Ann. Emerg. Technol. Comput., vol. 7, no. 2, pp. 1–8, 2023, doi: 10.33166/AETiC.2023.02.001.
S. S.-L. Chen and X. Lin, “Application of Decision Tree Algorithm in Educational Data Mining,” Curric. Teach. Methodol., 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:259020691
T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining,” Inf., vol. 14, no. 1, 2023, doi: 10.3390/info14010054.
M. A. Jassim, “Analysis of the Performance of the Main Algorithms for Educational Data Mining: A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1090, no. 1, p. 012084, 2021, doi: 10.1088/1757-899x/1090/1/012084.
Yadi, “Implementation Algorithm C4.5 Classification Of Prospective Scholarship Recipients,” J. SimanteC, vol. 11, no. 1, pp. 27–32, 2022.
L. Barbeiro, A. Gomes, F. B. Correia, and J. Bernardino, “A Review of Educational Data Mining Trends,” Procedia Comput. Sci., vol. 237, pp. 88–95, 2024, doi: 10.1016/j.procs.2024.05.083.
R. Akbar and S. ’Uyun, “Penentuan Bantuan Siswa Miskin Menggunakan Fuzzy Tsukamoto Dengan Perbandingan Rule Pakar dan Decision Tree (Studi Kasus : SDN 37 Bengkulu Selatan),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 4, pp. 651–662, 2021, doi: 10.25126/jtiik.0813191.
P. Li, F. Xiong, X. Huang, and X. Wen, “Construction and optimization of vending machine decision support system based on improved C4.5 decision tree,” Heliyon, vol. 10, no. 3, p. e25024, 2024, doi: 10.1016/j.heliyon.2024.e25024.
Dhoni Hanif Supriyadi, F. B. Siahaan, S. Anwar, and F. W Handono, “Prediction of Customer Creditworthiness with the C4.5 Algorithm at PT Menara Indonesia Company,” JSAI (Journal Sci. Appl. Informatics), vol. 7, no. 3, pp. 512–521, 2024, doi: 10.36085/jsai.v7i3.7237.
D. Hendri, D. Nadha, F. K. Basri, M. F. Wajdi, and N. Nadhirah, “Comparation of Decision Tree Algorithm, Naive Bayes, K-Nearest Neighbords on Spotify Music Genre,” IJATIS Indones. J. Appl. Technol. Innov. Sci., vol. 1, no. 1, pp. 47–53, 2024, doi: 10.57152/ijatis.v1i1.1219.
M. Daud, R. Juita, and C. D. Suhendra, “Penerapan Metode Algoritma C4.5 Untuk Klasifikasi Kelayakan Penerima Program Bantuan Pada Dinas Sosial Kabupaten Manokwari,” Decod. J. Pendidik. Teknol. Inf., vol. 5, no. 1, pp. 271–278, 2025, doi: 10.51454/decode.v5i1.1057.
R. Ordoñez-Avila, N. Salgado Reyes, J. Meza, and S. Ventura, “Data mining techniques for predicting teacher evaluation in higher education: A systematic literature review,” Heliyon, vol. 9, no. 3, 2023, doi: 10.1016/j.heliyon.2023.e13939.
F. M. Hana, “Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 32–39, 2020, doi: 10.47970/siskom-kb.v4i1.173.
T. Tukino, “Penerapan Algoritma C4.5 Untuk Memprediksi Keuntungan Pada PT SMOE Indonesia,” J. Sist. Inf. Bisnis, vol. 9, no. 1, p. 39, 2019, doi: 10.21456/vol9iss1pp39-46.
D. Perez-Guaita, G. Quintas, Z. Farhane, R. Tauler, and H. J. Byrne, “Corrigendum: ‘Data mining Raman microspectroscopic responses of cells to drugs in vitro using multivariate curve resolution-alternating least squares’ (Talanta (2020) 208, (S0039914019310197), (10.1016/j.talanta.2019.120386)),” Talanta, vol. 236, no. September 2021, p. 122682, 2022, doi: 10.1016/j.talanta.2021.122682.
M. M. Islam, F. H. Sojib, M. F. H. Mihad, M. Hasan, and M. Rahman, “The integration of explainable AI in Educational Data Mining for student academic performance prediction and support system,” Telemat. Informatics Reports, vol. 18, no. May, p. 100203, 2025, doi: 10.1016/j.teler.2025.100203.
S. Mutrofin, M. M. Machfud, D. H. Satyareni, R. V. H. Ginardi, and C. Fatichah, “Komparasi Kinerja Algoritma C4.5, Gradient Boosting Trees, Random Forests, dan Deep Learning pada Kasus Educational Data Mining,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, p. 807, 2020, doi: 10.25126/jtiik.2020742665.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Nanda Pratama Alfyandri, Hari Antoni Musril, Sarwo Derta

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

