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The development of Artificial Intelligence (Al) technology has been widely
used by the Government and Society to support daily activities, including
supporting the decision-making process. In Indonesia's agricultural sector,
innovations are currently being implemented using Machine Learning
methods, especially Artificial Neural Networks, to estimate the yield of an
agricultural commodity. This technology is very relevant to be applied in
the agricultural sector, especially since the majority of Indonesians are
farmers. With prediction of production and prices, the Government can
estimate the amount of production and immediately set a strategy to keep
prices stable. The use of predictive data on agricultural production results is
very important in maintaining food availability and preventing price
fluctuations that affect society. This study uses data on chili commodities,
employing a qualitative method with the Backpropagation Algorithm of
Artificial Neural Networks. The objective is to generate projections of the
Artificial Neural Network (ANN) model using the Altair Al Studio with
minimal error so that better prediction values and performances are
produced. Based on the results obtained, the best network architecture is
the 12-25-1 model for large chili production, and 12-15-1 for bird’s eye chili
pepper. This model is proven to be able to help production planning,
supply distribution arrangements, and maintain price and supply stability
by related agencies.

1. Introduction

Indonesia is known as a country with abundant natural resources, where most of its population relies

on farming for their livelihood [1]. The agricultural sector is currently vital as part of the food security

program initiated by the Government. To ensure the precise quantity of agricultural commodities needed

to improve citizens' welfare, innovations are crucial to help farmers market their produce [2]. The

development of Artificial Intelligence technology can now offer solutions to predict future harvests

through artificial neural network machine learning [3]. Making predictions is a complex challenge often

categorized as pattern recognition, which is highly suitable for resolution using the Artificial Neural
Network (ANN) approach [4]. This technology can be applied in various fields, including agriculture [5].

In the agricultural sector, the amount of production is closely related to market prices. This is because it
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also impacts farmers' livelihoods, the needs of the community, the sustainability of the market's balance
chain, the basis for macroeconomic calculations, tax rate determination, and so forth [6]. Determining
market price predictions, especially during harvest, is crucial for deciding whether the harvest should be
sold immediately or stored. However, this decision isn't uniform for all farmers. Farmers dealing with
agricultural commodities prone to spoilage must, of course, make immediate decisions [7]. The
Government's role is to control, supervise, and assist farmers and the community by providing
guaranteed market price certainty, preventing farmers from incurring losses, particularly during harvest
[8]. One such perishable commodity is chili, which includes large red chili, large green chili, and bird's
eye chili pepper [9].

One important areas in the agricultural sector that receives special attention is the food and
horticulture subsector [10]. Among horticultural commodities, chili is one of the main priorities in efforts
to increase the growth of the agricultural sector [10]. Chili is a very popular consumption ingredient in
Indonesia. The Ministry of National Development Planning of the Republic of Indonesia (Bappenas)
noted that in 2023, the consumption of large chilies by the Indonesian people reached an average of 2.42
kilograms per capita per year, increasing by 4.3% compared to the previous year, and recording the
highest figure in the last five years [11]. Meanwhile, bird’s eye chili pepper consumption also showed an
increase of 5.8% (year-on-year/yoy), to 2.19 kilograms per capita per year, which is the highest amount
since 2019. In total, the national demand for large chilies for household consumption in 2023 reached 675
thousand tons per year, a growth of 5.7% (yoy) compared to the previous year. Meanwhile, the demand
for bird’s eye chili pepperfor household consumption also increased by 6.9% (yoy) to around 610.8
thousand tons per year [12]. Prayitno, in his research, argued that chili is a horticultural commodity that
is highly sought after by the public [13]. The price of chili is relatively unstable because it is highly
dependent on the availability of supply in the market [14]. When the stock of red chili is abundant, prices
tend to fall; conversely, if the supply is limited, prices can increase sharply. According to Loanga and
colleagues, the price of chili is influenced by five variables: the price of bird’s eye chili pepper for farmers,
the price of bird’s eye chili pepper for traders, the amount of bird’s eye chili pepper production, the
amount of demand for bird’s eye chili pepper, and the price of curly chili [12].

The price level of large red chili, both among producers/farmers and consumers, is highly dependent
on the volume of production available [10]. Therefore, the active role of the regional government through
related agencies is very necessary, especially through policies that support increased production and
stabilization of chili prices. One of the recommended steps is the development of planting patterns and
chili cultivation management aimed at meeting demand, especially when there is a decrease in supply
[15]. Chili prices tend to fluctuate due to several factors, such as unstable distribution resulting from
overproduction and underproduction [16]. Under Law No. 18 on Food, the Government has guaranteed
that its role in the agricultural sector includes maintaining market price stability [17].

Referring to Law Number 23 of 2014 on Regional Government, regional governments are responsible
for regulating food sector affairs, including the provision, distribution, and control of the supply stability
and prices of staple foods in their respective regions [18]. One of the initiatives carried out to ensure the
needs of the community, especially economically vulnerable groups, is the market operation program,
which aims to keep prices stable [11]. Market operations are carried out by setting prices below market
prices as an effort to increase the availability of goods through cooperation with private business entities,
State-owned enterprise (BUMN), or direct distribution to retailers. The goal is to prevent excessive price
spikes. The chili price prediction strategy has begun to be implemented in several regions in Java, for
example, in Central Java Province [6]. Central Java Province is one of the largest chili-producing
provinces in Indonesia, second only to East Java [19].
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Table 1. Production of Bird’s eye chili pepperand Large Chili in Indonesia in 2025 [19]

Bird’s eye chili
Province pepperProduction Large Chili/TW/Teropong
(quintal) Production (quintal)
Aceh 640914,66 37287
North Sumatra 835826,84 29484,74
West Sumatra 279213,69 2,26
Riau 62856,38 11396,1
Jambi 435784,76 11156
South Sumatra 89483,57 66037,9
Bengkulu 242079,1 296531,85
Lampung 113333,83 59865,1
Bangka Belitung Islands 60092,78
Riau Islands 14873,67 4496,84
Jakarta 404,15 1,2
West Java 1637558,85 1441340,45
Central Java 2480795,12 404419,36
Special Region of Yogyakarta | 290844,06 11041,3
East Java 5689752,04 818452,1
Banten 26571,26 2841,89
Bali 220725,81 76145,64
West Nusa Tenggara 941552,26 104445,36
East Nusa Tenggara 112664,23 12829,41
West Kalimantan 98363,93 24415,39
Central Kalimantan 40374,9 7773,67
South Kalimantan 125753,72 81930,35
East Kalimantan 60583,26 8615,48
North Kalimantan 66463,29 54061,85
North Sulawesi 132955,76 2285
Central Sulawesi 229180,07 25464,89
South Sulawesi 361279,04 16190947
Southeast Sulawesi 38908,56 16230,29
Gorontalo 103720,4
West Sulawesi 32753,37 23507,01
Maluku 39403,19 43739
North Maluku 40166,11 305
West Papua 12905,21 1182,73
Southwest Papua 33249,84 1232,79
Papua 9057,6 3758,8
South Papua 15568,31 2474,38
Central Papua 33738 14533
Papua Mountains
Indonesia 15649751,62 3819772
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The development of Artificial Intelligence (AI) technology, especially machine learning through
artificial neural networks, has successfully mapped calculations into predictions [20] which are able to
produce numbers or values of the next harvest, mapping the amount of harvest according to their needs,
so that the government can help farmers in distributing agricultural commodity needs throughout
Indonesia and even be able to export abroad so that farmers and the public do not need to worry about
the rising and falling of market prices [6].

The use of Machine Learning (ML) technology enables computer systems to learn from data and
experience to complete specific tasks independently [21]. This approach differs from traditional
programming methods, which require explicit writing rules and procedures [22]. Machine Learning
works through algorithms developed to detect patterns in data, then use those patterns to make
predictions or decisions [23]. Research shows that Machine Learning (ML) and Deep Learning (DL)
methods show superior performance compared to classical statistical approaches such as linear
regression, especially in the context of predicting agricultural yields at the regional level [24][25]. One of
the prominent techniques in Machine Learning is the Artificial Neural Network (ANN) [26], which is
very effective in processing large-scale data and non-linear patterns. Artificial Neural Network (ANN) is
an information processing model inspired by the workings of the human nervous system [4]. This model
is capable of learning complex relationships between input and output data and recognizing hidden
patterns that are not easily detected by conventional analysis techniques [24].

Prediction is a systematic process to estimate possible future events by utilizing historical data
and current information, to minimize the error between actual results and estimates [27]. Forecasting
agricultural commodities is an important step in overcoming problems faced by farmers as producers
and society as consumers, especially related to price fluctuations such as chili commodities [12]. The use
of artificial neural network technology is expected to overcome problems with crop production and can
control the market prices of agricultural commodities in Indonesia [28].

2. Method

Research methodology refers to the steps or work structures that are followed systematically to
achieve the expected research objectives [29]. This study applies a qualitative descriptive approach with a
focus on data processing related to two types of agricultural commodities, that is large chili and small
chili. The qualitative approach is used to obtain a thorough understanding of the phenomena
experienced by the research subjects, through descriptive verbal narratives within their natural context,
utilizing various scientific methods [30]. The data samples used in this study were processed using the
backpropagation algorithm, using data sourced from official publications of the Central Statistics Agency
(BPS) and information on agricultural production of chili commodities in Central Java Province, with a
focus on test data for the harvest of large chili and small chili in Magelang Regency [19].

The Backpropagation algorithm will be used as the data analysis method using Al Studio software to
project numerical outcomes, aiming for the highest accuracy and minimal data errors so that it can be
seen that the algorithm function can run as expected [31].

2.1. Operational Concept

Operational concepts describe the indicators that are related in detail and measurably from a concept
or dimension [30].
Table 2. Operational Concept

Method Indicator Instrument
Backpropagation Numerical data of crop | 1) Prediction data of chili plant
Algoritm production: production in Magelang Regency
[21] 1. Large Chili 2) Performance of Neural Network

2. Bird’s eye chili pepper prediction model
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2.2. Data Collection Sources and Techniques

This study uses primary data as its main source, obtained from agricultural horticulture statistics and
official data from the Central Statistics Agency (BPS). For data collection, researchers conducted direct
observations at the research location to identify research problems. This was followed by direct
interviews with extension workers and farmers as part of the data collection process [32]. The data
includes monthly production information for two types of chili, that is large red chili and bird’s eye chili
pepper from 2018 to 2024. This data is then classified by sub-district and chili type, allowing for specific
analysis and recognition of chili plant production patterns. This information will form the basis for
building a predictive model that considers differences between chili categories and production trends
within each category.

Meanwhile, secondary data is supported based on information used to complement primary data[33].
This data was obtained through interviews with parties directly related to the chili production process in
Magelang Regency, such as the Department of Agriculture, farmers, agricultural extension workers, and
local communities.

2.3. Preprocessing Data

In the data preprocessing stage, the collected information is first validated by matching it against
actual chili production data obtained directly from official sources, specifically the Magelang Regency
Agriculture and Food Service. Preprocessing in other machine learning models requires finding outliers,
which are data points that deviate before data validation is carried out [34]. This is, of course, done based
on the conditions or forms of the existing data. This validation aims to check the consistency of the data
and detect possible differences or discrepancies between the data downloaded from the Horticultural
Agricultural Statistics Data Provision Information System (SIPEDAS) with the actual conditions in the
field as data obtained through the Magelang Regency Agriculture and Food Service [35]. Preprocessing
also involves a cleaning process, including removing duplicates and addressing missing values [36][29],
followed by validation. After validation, the dataset is checked for abnormalities in the obtained dataset,
such as missing values. If found, steps are taken to complete the missing data [28]. This ensures the
prediction model can operate optimally without being disturbed by incomplete data [37]. Prediction
criteria depend on the specific dataset collected based on research needs [38]. In addition, data format
standardization is performed to ensure all variables are in a uniform and consistent numerical form [31].
This step helps prevent errors during the analysis and training process of the artificial neural network
model [16]. Preprocessing follows a series of steps, beginning with the collection of data ready for
processing [25][36].

Furthermore, the horticultural chili production data was transformed from a wide table format into a
time series format for use in Artificial Neural Network (ANN) modeling with Al Studio. This
transformation was carried out by sorting the data by time for each sub-district and chili category, such
as large chili and bird’s eye chili pepper [35].

To form a dataset that matches the time series prediction, the dataset used was obtained and then
processed through a windowing process with a 13-month sliding window approach [39]. In this
approach, each training iteration uses production data for the previous 12 months as input features,
while the following 1 month is used as a prediction target. This method allows the model to recognize
annual seasonal patterns in chili production and generate predictions based on historical trends in each
sub-district.

In the final results, re-testing is performed to identify any errors in the data by analyzing the
propagation algorithm until more accurate data is obtained [40]. Adjustments are made to the algorithm
because, in real data in the field there is a tendency for extension workers not to fill in data in the
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production database; the architectural model is expected to be more accurate in producing predictions of
production results.

2.4. Training of Artificial Neural Network Architecture Model

In the training stage of the Artificial Neural Network (ANN) architecture model, chili production
data will be processed using the sliding window technique to form a set of training and testing data [41].
The model will be trained using a 13-month sliding window approach, where each iteration uses
production data from the previous 12 months as input features and the next month as a prediction target.
With this, the model can recognize seasonal patterns of chili production in each sub-district based on
historical data. After the training process, an evaluation is conducted by comparing the predicted output
with the actual production data to measure the model's performance [27]. This involves using data that
has not been included in the training process to assess the model's performance [4].

This model is built using 12 neurons in the input layer, which represent chili production data for the
previous 12 months, and 1 neuron in the output layer as the prediction target. To determine the best
architecture, various model configurations were tested: 12-5-1, 12-10-1, 12-15-1, 12-20-1, 12-25-1, and 12-
30-1, for both the large chili and the bird’s eye chili pepper datasets.

After the best architecture was identified, the model was further tested with various numbers of
training cycles: 500, 1000, 1500, 2000, 2500, 3000, and 3500. This testing aimed to evaluate the optimal
number of training cycles that yielded the best performance in predicting chili production.

2.5. Model Testing and Evaluation

Each architecture was tested in stages, starting from a simple model (12-5-1) to a more complex
model (12-30-1). This staged approach allows for performance comparison between configurations in
terms of prediction accuracy and model efficiency [42]. Furthermore, once the optimal architecture was
identified, the model was tested with varying numbers of training cycles to determine the optimal
iteration that produced the most accurate predictions. For comparison, a regression algorithm was also
used to evaluate the ANN's performance in handling chili production prediction, thus offering a clearer
perspective on the superiority of the developed model [31].

The evaluation was performed by utilizing the performance operator in the Altair Al Studio software,
which supports the statistical evaluation of regression tasks and generates various performance
indicators [43]. Several metrics were used, including : Root Mean Squared Error (RMSE) [24], which
measures the average prediction error. The smaller the RMSE value, the higher the accuracy of the model
in predicting chili production [3]. Additionally, Mean Absolute Error (MAE) was used to calculate the
average absolute difference between predicted and actual values, thus providing a direct measure of the
model's accuracy level [23]. In this study, RMSE and MAE are the main metrics in assessing the overall
level of accuracy of the prediction results. In addition, Correlation analysis was included to illustrate the
linear relationship between the model's predictions and the actual data. A correlation value close to 1
signifies the model's strong ability to recognize data patterns, whereas a low correlation value suggests
that the model is not optimal in capturing data trend patterns. All of these metrics provide an overview
of the prediction error rate of each model architecture, making it easier to choose the most balanced and
best model between accuracy and complexity [24].

In the implementation of the chili production prediction model based on Artificial Neural Network
(ANN), several risks need to be anticipated to ensure its long-term sustainability. Firstly, policy changes
in the agricultural sector can affect the production data reporting system used as the basis for model
training. Furthermore, reliance on data presents a significant challenge, especially if the available data is
incomplete, contains errors, or does not reflect actual conditions in the field [4]. This can impact the
model's accuracy and its reliability in supporting decision-making. Then, the variability of field data due
to external factors, such as extreme weather changes, disruptions in planting patterns, or fluctuating
fertilizer prices, can lead to unpredictable shifts in production patterns [44]. This risk may reduce model
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performance in the long term, especially if the training data does not encompass sufficient variation.
Therefore, the model must be updated regularly with the latest data to adapt to changing field
conditions.

3. Results and Discussion

Artificial Neural Networks (ANN) excel at recognizing activity patterns based on previously learned
historical data, enabling them to generate predictions for new, unseen data. This process is systematically
included in the form of predictive computing [22]. The utilization of Artificial Neural Networks itself is
part of the field of artificial intelligence in computer science. Artificial Intelligence (Al) offers various
techniques and algorithms that allow automatic data analysis and processing [45], aimed at solving
diverse problems, including through the Backpropagation method [35].

3.1. Backpropagation

The following are the stages in implementing the Backpropagation Algorithm: [46]
e Step 0: Initialize weights.
e Step 1: If the stopping condition is not met, the process proceeds to steps 2-9.
e Step 2: During the training process, the system will execute the procedure from steps 3-8.

Feedforward Stage
e Step 3: Each unit in the input layer receives an input value (xi, for i=1 to n).
e Step 4: Units in the hidden layer (zj, for j=1 to p) process the data by adding weights to the input
received.

[/ remone/
|

| | Mormalization | ‘
|

| | Weight Initialization ‘
|

| | Feed Forward | ‘
|

| | Backpropagation ‘

| | Weight Update | ‘

|
| |

| Clarification Resull:s| ‘

/Clariﬁcation Results/

Figure 1. Backpropagation Flow [46]
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In general, the data processing process using the artificial neural network method based on the
backpropagation algorithm is divided into 3 stages, including [3] :

1) Data preprocessing

2) Training and modeling of artificial neural networks, and

3) Testing

3.2. Data preprocessing

The dataset consists of 2,520 time series entries with 22 attributes, which include one date attribute
per month from 2022 to 2024, as well as 21 other attributes representing the amount of chili production in
21 sub-districts in Magelang Regency [47].

Table 3. Large chili data from 2022 to 2024 [14]

A E C D E F G H | J K L i) N o] P 7] R i T u ¥
1 | Tanggal SALAM BOROBU NGLUW SALAM SRUMEL DUKUN MUNTIL MUNGE SAWANC CANDIN MERTC TEMPUF KAJOR! KALIAMC BANDON WINDUSA SECAN TEGALF PAKIS  GRABAC NGABLAH

3 Jan-22 180,00 109000 7400 DESOD 15300 82100 GOF00 V280 23500 FEO0 2000 7000 FRR00  FSO00 44000 24500 206100 22300  SO4600  3E00  7ES100
a7 Feb-22 133,00 93000 14000 FRO00 960,00 286000 635,00 GEEA0  T2000 20,00 28000 15100 103000 280,00 W00 135000 640,00 13400 B3G000 1634400  BOGE00
a5 Mar-22 280,00 BDO00 23000 18500 120000 451500 40800 EW000 EO2000 28000 000 18200 93400 14000  M000 430000 SEQ00 000 12BET00  BE2E00  E27A00
a3 Apr-22 28200 B3000 32300 0000 10B000 4300 000 43100 4BR000 13800 000 13300 93300 FOOO0 13300 FIMO00 19B00 000 HE3000 1FE00  FOM00
a0 Map-22  B4000 88000 35000 FOO00 2000 323000 143100 43000 420000 M300  MO00  FO00 M0GOO0 24500  ME00 BAFO00  A000 000 FOS00 357000  FEI000
a1 Jun-22 26000 26500 22500 18000 95200 384700 MOL00 23500 94000 13000 13200 G400 104200 283800 16300 219300 37R00 29500 22R300 4000 532000
a2 Julk22 24500 BOZ00 12600 26000 MEG00 120600 BM400 19300 600 ES00  EA00  BA00 40200 202700 9300  7REGO0 3BR00 13200  BEBE00 402100 441400
33 Aug-22 24000 12000 32300 130,00 153500 326100 MO0 42360 (FFEO0 P00 000 BA00 103000 207700 2300 M8300  EHO0 12800 324000 137000 GES100
a4 Sep-22 G000 M000 47E00 18300 160300 443100 18500 26400 108800 13000 0,00 000 M0200  B200 34200 133600 53300 9700 44500 336300  E4T400
95 Oet-22 200,00 6500 BOS00 19500 108600 341600 B1200 G000 154000 6300 6500 000 108300 G300 A7E00  0A00 32600 9300 403000 3700 E25500
36 hlow-22 136,00 000 36000 18500  E2600 443000 TEEOD 24500 MI500 38400  E300 000 00 700 000 E2300 47000 2300 832000 333300 430200
a1 Dec-22 213,00 000 10200 38000 52400 MET00 08500 7400  36E00  H200 000 000 28300 MO0 200 B4300 42800 200 TEROD 483200 300
3@ | Jan-23 12300 18E300 000 107000 126100 44400 170L00 48200 1F2G00 48000 000 000 266500 M4800 2000 138700 23300 26200  3B3500 142500 633500
93 | Feb-23 133,00 496200 000 134700 W3200 580500 13000 34000 127800 20700 000 000 T200 126800 ME00  B0B300 ZFE00 43000  BI0O00 1342500 72900
o0 | Mar-23 46000 463600 ES00 300500 8300 GEFEO0 106200 32600 TFOERO0 26200 12500 000 87000 227800 13100 2636200 472000 M200 374000 3J40E00  EGST00
01 | Apr-23 13500 496300 200 ETO00 G400 523600 9000 23300 T@E00 12800 0,00 000 9700 138400 4300 197H300 220100 100 2451000 322300 585400
02 | May-23 B4300 442600 35800 266500 E3400 4BGE00 12BE00 6220 1FEE00  ES00  E4,00 000 102700 G300 12100 7000 EFTO0 1200 1951000 1E1RO0 E108,00
103 | Jun-2d 19500 236500 38700 B200 61200 489500 228000 33800 6000 6700 64,00 000 107200 244100 6200 251700 12300  HO00 300 B3RO0 613000
04 | Jul-Z3 24300 EF000 33000 84600 OO0 272400 248100 13600 126000  BR00 300 000 4300 BOTO0 12300 17300 000 B400  BAER00 9300 GAIT00
105 | Aug-23 19000 90700 33500  EM00  ETO00 30IG00 297200 M20 123900  Ba00  BA00 000 134,00 1550,00 9600 B4500 000 15400 1093000 35000 440200
06 | Sep-23 28100 23600 46340 EFV00  8RA00  FTIO00 170000 19530 96000 1300 300 000 133400 148400 J600 108300 000 FROD  ERRS00 B3RO0 333200
07 | Qot-23 18800 22200 42060 7700 243400 76300 20000 13300 132000 28200 4300 000 283000 1538,00 4700 X000 000 17A00  FAGOOD 47500 45TH00
0 |Mow-23 36700 21000 36100 263300 845,00 EII00  G4E00 23000 98800 1300 4300 000 27000 #4500 0600 700 4200 19200 804200 E2300 196600
103 | Dec-23 347,00 000 G400 233000 200000 24500 65500 23200 120600 13200 000 000 1830,00 000 12300 4100 5800 10400 BROB00  E3200 294400
#o | Jan-24 18600 183000 24380 1500 8BE00 236200 64000 1GEE0 126000 430 3000 000 23300 E30,00 4320 326300 420 12000 EEGG00 92300 165600
| Feb-24 14900 165800 2000 17000 743,00 272800 44500 20060 243300 420 4000 000 X700 25200 GRE0 3TELH 000 12900 G000 235300  {RE200
2 | Mar-24  M500 174300 26350 16200 73300 269600 65200 19890 3ERR00 8400 000 000 7HE00 18000 10000 362200 000 8400 1620000 323300 200800
fta | Apr-24 17880 1BN04 23740 150000 ETRO00 283T00 28300 28250 3F2000  GEO0 000 000 B300 19720 9300 945700 1985 4300 2523600 27R052 235800
4 |May-24 18500 1BBEE0 10500 12000 GEOO0 28BAE0 400 26040 27E200 2280 000 000 BA300 24800 2100 1627200 B30 850 948800 288323 226000
#5 | Jun-24  1GE00 153824  MB00 18600 52400 28650 26000 27980 233000  BOGD 1500 000 90400 39500 12830 903300 25200 3300 THB2ED  27HA0 220600
HE | Jul-24 M000  1B0E00 840 12300 72200 408650 43200 23400 10000  EOED 2500 000 7RE00 260,00 7280 3E3ITO0 MOFO 000 FEE400 1T4EAE 128000
7| Aug-24 38000 173400  W700 104000 74200 407770 TIOOO  1R040 12000 BRSO 10,00 000 B3200 26500 BE00 3300 BRF0 000 TH4960 265544 MTO00
5 | Sep-24 23450 130071 1M00 130200 83400 236480 32100 16140 MO00  BOAD 1500 000 G700 3ME00 12680  29TAIY 2470 3200 F2BO00 2BV3SE  TME00
3 | Oot-24 18800 TEI27 37700 (79682 4480 GOOGSE 295008 16044 100154 6405 4000 000 65258 BASO0 30046 260000 857 10836 TEEO00 422800 1487
f20 |Mow-24 18100 88000 2400 1E0400 820,00 26FOS0  G1212  BG00  FEGO0  7A3Y G000 000 ES500 32500 13360 212500 000 12400  MFE00 16446 1RO200
121 | Dec-24 163,00 000 22850 23400 92600 262600 TAL00 400 BA000 2333 EG00 000 BOGO00 48500 15220 228500 40 NEO00 431400 262654 17400
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Table 4. Large chili data from 2022 to 2024 [14]
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The data that has been collected and processed previously is then entered into the modeling using Al

Studio. In this process, based on statistical analysis of the data in Al Studio as shown in the two

figures below, several discrepancies were found in the data that needed to be adjusted before further

analysis [43].
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Figure 3. Identification of initial data discrepancies (continued)
Through this preprocessing stage, the data becomes cleaner and ready to be used in predictive
modeling of chili production in Magelang Regency, as shown in the following figure.
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The data after preprocessing is the main dataset that is entered into the model through the Retrieve
Data operator [46]. This dataset has 21 attributes, each representing the amount of chili production in
each sub-district.

3.3. Training and modeling of neural network methods

The series in the data training process produces models or patterns according to the prediction
modeling in AI Studio as follows:
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Figure 6. Predictive Modeling Flow in AI Studio [43]

This dataset has 21 attributes, each of which represents the amount of chili production in 21 sub-
districts in Magelang Regency. Since the model must predict chili production for each sub-district, it is
necessary to train the model with 21 different targets. To handle this, the multilabel modeling method
[48] is used, which allows the model to learn and predict multiple targets in one training process,
allowing the model to learn and predict more than one target at a time.

Select Attributes (5) Windowing Generate Macro SetRole Neural Net

i exa '—H exa exa . win thr “ thr exa [T ea tra mod mod
: thr thr & ori ’ exa out
out

Figure 7. Model Training in Multi-Label Modeling [43]
Figure 9 shows the process of training a prediction model using the multi-label modeling function in

pre

Altair Al Studio. In this process, the Neural Network method is used with various parameter
configurations to find the model with the best performance and optimal prediction accuracy. Model
training begins with the Select Attribute operator, which is used to select one production attribute in the
dataset to be processed at a time [23]. The selection of one attribute aims to save computing resources and
speed up the training process. In addition, this approach is also chosen because there is no direct
relationship between the amount of production in one sub-district and another. Therefore, model training
is focused on one target label separately without being influenced by production data from other sub-
districts.

The selected data, windowing process is applied to form a dataset suitable for time series
prediction. In this study, a 13-month sliding window approach is used, with each training consisting of
production data for the previous 12 months as input features, while 1 month is used as a prediction
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target. With this method, the model can capture the annual seasonal pattern of chili production and
predict the next month's production based on historical trends in each sub-district.

The prediction dataset is still in the form of a window data set, the attribute selection process is
carried out using the Select Attribute operator to filter only relevant attributes, namely date, actual
production data, and prediction results in each sub-district. The Rename operator is also used to rename
attributes to make them easier to understand. The result is a more structured dataset, consisting of 1 date
attribute [48], 21 actual production attributes in each sub-district, and 21 predicted chili production
results attributes in each sub-district.

3.4. Performance Testing and Evaluation

Performance evaluation is performed using the multi-label performance function, which allows
evaluation to be performed automatically for each label because the prediction model has 21 target labels.
The Performance Regression operator is used to assess the accuracy of the prediction model through
several key metrics. Root Mean Squared Error (RMSE) serves to measure the average deviation between
the predicted value and the actual value, by giving a higher weight to larger errors [3]. Therefore, the
smaller the RMSE value, the better the prediction performance of the model. Meanwhile, Mean Absolute
Error (MAE) calculates the average absolute difference between the actual value and the predicted value,
thus providing a direct measure of the accuracy of the prediction model. In this study, RMSE and MAE
were chosen as metrics to assess the overall accuracy level of the prediction results. In addition, the
correlation coefficient (r) is used to evaluate the strength of the linear relationship between the actual and
predicted values. A high correlation value (approaching 1) indicates that the model is able to capture
trend patterns in the data well, while a low correlation value indicates that the model's prediction ability
is inadequate. This correlation analysis is applied to determine the extent to which the model can capture
trends and seasonal patterns in the dataset [26].

The figure below shows the output results of the dataset obtained from the developed model
experiment. The result shows the prediction of chili production for each sub-district in Magelang
Regency. Information on the prediction results can be seen in the "prediction" attribute, which displays
the estimated chili production per sub-district using the Backpropagation Algorithm [27].
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Figure 8. Prediction Model Output
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To determine the optimal Neural Network architecture in predicting chili production, several
model configurations were tested with both datasets. The model performance assessment is based on
three main metrics, namely Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
correlation coefficient [26]. In addition, an analysis of the standard deviation of each metric was also
carried out to measure the extent of prediction consistency in various regions.

In the initial stage, the number of cycles in the model training process was set at 500 cycles as the
initial value. The selection of this number aims to identify the model architecture that provides the
best performance, before further tuning is carried out to determine the optimal number of training
iterations. Although each architecture was trained for 500 training cycles, the computation time
remains within manageable limits, considering the relatively small size of the dataset. Therefore, 500
training cycles are considered a reasonable choice in the initial stage of testing various model
architectures [46].

From several experiments on the configuration of the prediction model architecture, the model
with the best performance was obtained, as shown in Table 5 for the performance of the Large Chili
production prediction model and Table 6 for the performance of the Bird’s eye chili pepperproduction
prediction model.

Table 5. Performance of Large Chili Production Prediction Model with several model architectures

Architecture RMSE MAE Correlation
12-5-1 712.390 +/- 1089.775 478.793 +/- 750.158 0.863 +/- 0.085
12-10-1 696.018 +/- 1076.514 449.423 +/- 706.371 0.866 +/- 0.089
12-15-1 744.401 +/- 1178.456 541.118 +/- 910.541 0.871 +/- 0.073
12-20-1 729.713 +/- 1183.202 499.429 +/- 861.908 0.870 +/- 0.071
12-25-1 691.381 +/- 1052.801 442.387 +/- 672.019 0.866 +/- 0.090
12-30-1 752.578 +/- 1248.757 504.606 +/- 846.078 0.866 +/- 0.077

Table 6. Performance of Chili Pepper Production Prediction Model with several model architectures

Architecture RMSE MAE Correlation
12-5-1 573.196 +/- 619.136 362.707 +/- 370.903 0.872 +/- 0.100
12-10-1 571.655 +/- 623.674 375.145 +/- 397.583 0.879 +/- 0.092
12-15-1 570.121 +/- 602.069 354.108 +/- 347.987 0.877 +/- 0.093
12-20-1 575.730 +/- 616.592 353.836 +/- 369.165 0.881 +/- 0.091
12-25-1 603.467 +/- 634.124 401.095 +/- 390.749 0.876 +/- 0.090
12-30-1 . 598.651 +/-671.945 391.153 +/- 451.266 0.874 +/- 0.098 . .
Data-statistik-darihasil-predikst yang-dihasitkanr-menggunakanNeural- Netwoerk-dengan arsitektur terbaik berd:

Statistical data from the prediction results generated using the Neural Network with the best
architecture based on experiments on large chili in this study, namely 12 - 25 - 1, with the lowest
RMSE value of 691.381 and the lowest MAE of 442.387, and a stable correlation of 0.866. In addition,
this architecture has the lowest standard deviation of +1052.801 for RMSE and 672.019 for MAE,
indicating that the prediction results are more consistent across sub-districts. Meanwhile, a more
complex architecture, 12 - 30 - 1, does not improve accuracy and instead produces more uncertain
prediction results, indicating that the model is less able to predict data well.

For the bird’s eye chili pepper dataset, the best architecture is 12 - 15 - 1, with the lowest RMSE
of 570.121, the lowest MAE of 354.108, and a high correlation of up to 0.877. In addition, this
architecture also has the lowest standard deviation of +602.069 for RMSE and +347.987 for MAE,
which means that the prediction results are more stable in all sub-districts. Although the 12 - 20 - 1
architecture produces the highest correlation of 0.881, its RMSE value is also higher at 575.730, so 12 -
15 - 1 provides the best balance between error rate and ability to capture patterns from data.
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After selecting the best performing architecture, various numbers of training cycles were tested
to see how they affect the model performance. To determine the optimal number of training cycles,
the selected architecture was trained with 500 to 3500 cycles, with an increase of 500 cycles in each
trial. The resulting model from these experiments showed the performance as presented in the
following table.

Table 7. Performance of the large chili production prediction model with the 12-25-1 architecture

Tg;’igier;g RMSE MAE Correlation
500 691.381 +/-1052.801 442387 +/-672.019 0.866 +/-0.090
1000 514.253 +/-776.690 360.769 +/- 569.624 0.926 +/-0.060
1500 467.210 +/-711.916 345.883 +/- 578.036 0.945 +/-0.051
2000 406.815 +/-600.032 300.452 +/-494.166 0.954 +/-0.048
2500 378.722 +/- 574.293 273.514 +/-454.522 0.960 +/-0.040
3000 353.592 +/- 523.842 252.915 +/- 407.839 0.965 +/-0.036
3500 324.300 +/-456.411 229.006 +/- 346.240 0.968 +/-0.034

Table 8. Performance of the Chili Pepper Production Prediction Model with the 12-15-1 Architecture

Tg‘yi:iie‘;g RMSE MAE Correlation
500 570.121 +/- 602.069 354.108 +/- 347.987 0.877 +/- 0.093
1000 469.055 +/- 567.829 282.842 +/- 306.651 0.924 +/-0.062
1500 419.554 +/- 544.795 259.503 +/- 311.016 0.944 +/-0.049
2000 392.600 +/- 521.389 250121 +/- 313312 0.954 +/-0.042
2500 364.357 +/- 485.683 232.750 +/- 282.707 0.961 +/- 0.035
3000 342.878 +/- 461.384 218.383 +/- 262.895 0.965 +/-0.033
3500 326.698 +/- 442.639 206.694 +/- 245.439 0.969 +/-0.029

Statistical data from the prediction results, generated using the Neural Network with the
best architecture based on the experiments in this study, namely 12 - 25 - 1 for the large chili
prediction model and 12 - 15 - 1 for the bird’s eye chili pepper prediction model. The results
display the main statistical values of the prediction model, such as the minimum, maximum, and
average values of the prediction results generated as seen in the figure below.
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#  prediction(NGLUW...  Real 0 -6.614 527.376 130421
# prediction(SALAM -... Real 0 35358 3011.793 475.329
#  prediction(SRUMB... Real 0 60.025 2954.502 1003.177
# prediction(DUKUN -...  Real 0 208.530 7618.021 2859.956
#  prediction{(MUNTIL... Real 0 -236.579 3863.022 766.164
#  prediction(MUNGKI... Real 0 -38.213 965.602 256.565
v
< >

Shovang attributes 1-43 Examples: 107 Special Attributes: 22 Reqular Amributes: 21

Figure 9. Statistics of prediction results for large chilies using the 12-25-1 model
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A ExampleSet (Multi Label Performance (CB)) M ExampleSet (Multi Label Performance CR)
Name Type Missing Statistics Filter (43 /43 atributes) T~
A
# Last Tanggal in win... Date time o Jan 31, 2016 12:00 AM Nov 30, 2024 12:00 AM 3226d Oh Om 0s
#  prediction(SALAMA...  Resal o 6.222 896.492 121.795
# prediction(BOROBU...  Real o -996.618 6649.407 842.202
# prediction(NGLUWA...  Real 0 -51.435 999.938 276.831
#  prediction(SALAM - ...  Real o -71.240 §662.517 746.417
#  prediction(SRUMBU...  Real 0 705.864 6166.405 2145.056
#  prediction(DUKUN -...  Rsal o 2329.949 18335.962 5077.423
# prediction(MUNTILA...  Real o -21.923 6682.824 701.373
#  prediction(MUNGKI... Real o -67.375 1114920 347.930 )
< >
Showing atributes 1 - 43 Examples: 107 Special Attributes: 22 Regular Attributes: 21

Figure 10. Statistics of prediction results of bird’s eye chili pepperwith the 12-15-1 model

4. Conclusion

The Backpropagation algorithm on the Artificial Neural Network (ANN) developed to determine the
prediction of large chili and bird’s eye chili pepperproduction in this study produced the best model
which had a Model Architecture configuration of 12 - 25 - 1 for predicting large chili production and
Model Architecture 12 - 15 - 1 for predicting bird’s eye chili pepper. The best results were obtained at
3500 training cycles, with the highest accuracy indicated by the RMSE value of 324,300, MAE 229,006, and
correlation of 0.968 for the large chili model, and RMSE 326,698, MAE 206,694, and correlation of 0.969 for
the bird’s eye chili pepper model.

This Artificial Neural Network (ANN) based prediction model has high flexibility and can be
developed to support various policies in the agricultural sector. With its adaptability, this system can be
applied and further developed for various types of tasks and agricultural commodities.
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