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1. Introduction

The development of brain-computer interface (BCI) technology has advanced rapidly, enabling a wide
range of applications in healthcare, education, human-computer interaction, and entertainment. One of the
most prominent research areas in this domain is emotion recognition based on electroencephalogram (EEG)
signals [1]-[3]. The ability to detect emotions in real time is important in applications such as psychological
therapy, mental health monitoring, and enhancing user experience in virtual reality environments. EEG-based
approaches are considered superior to those relying on facial expressions or speech, as EEG directly reflects
neural activity and is relatively resistant to manipulation [4]-[6].
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However, several major challenges remain. First, EEG signals are nonlinear, nonstationary, and highly
complex, making feature extraction difficult. These characteristics often render conventional methods, such as
time- or frequency-domain analysis, insufficient to capture the full dynamics of EEG signals [7]-[9]. Second,
the limited amount of data poses a serious constraint. EEG data collection requires specialized equipment,
high costs, extended recording sessions, and limited subject participation. Consequently, classification models
often suffer from generalization issues, particularly when trained on small datasets [10]-[13].

Various approaches have been proposed to address these challenges. For instance, EEG signals have been
represented as images such as recurrence plots (RP) and spectrograms (SP), which are then processed using
convolutional neural networks (CNNs). This approach leverages the power of deep learning to capture
complex patterns within brain signals [14], [15]. Meanwhile, to mitigate data scarcity, recent studies have
employed data augmentation techniques based on generative adversarial networks (GANSs), which can
generate synthetic samples with characteristics similar to real data. As a result, research in this field is evolving
toward the integration of advanced representation methods and data augmentation strategies [16]-[19].

Nevertheless, image-based representation and data augmentation approaches often require substantial
computational resources and complex processing pipelines. As an alternative, Fast Fourier transform (FFT)
band power remains a widely used feature extraction method due to its simplicity and computational
efficiency [20], [21]. The FFT decomposes EEG signals into several frequency bands—9, 6, a, B, and y—each
associated with specific cognitive and emotional states, thus providing a solid foundation for emotion
classification. Furthermore, FFT is relatively easy to implement and computationally efficient, making it a
relevant baseline before incorporating image-based representations [22], [23].

Based on this background, the present study focuses on EEG-based emotion classification using features
derived from FFT band power. The SEED dataset [24] was employed, as it is widely acknowledged as a reliable
benchmark for emotion recognition research due to its high quality and experimental richness. Model
validation was carried out through a stratified 10-fold cross-validation scheme to ensure robustness and
generalizability. Model performance was assessed using three evaluation metrics —accuracy, F1-score, and
Cohen’s kappa — with the latter providing a more rigorous measure of agreement that accounts for random
chance. The outcomes of this research are intended to establish a strong baseline for future comparisons with
more advanced methods, including multi-representation convolutional neural networks (CNNs) and
generative adversarial network (GAN)-based data augmentation techniques.

To situate this work within recent developments, it is important to note that substantial progress has been
made through GAN-based augmentation, nonlinear image representations, and attention-based deep learning
models. However, relatively little research has examined how effectively a lightweight and interpretable
spectral approach can perform without synthetic data or high-capacity architectures. Existing studies often
report accuracy gains after augmentation or complex transformations, yet the performance of a purely
frequency-domain baseline has not been revisited systematically. Therefore, this study fills that gap by
evaluating FFT band power combined with an LSTM classifier as an efficient baseline that can perform
competitively even without augmentation. This contribution provides a clear comparison point for future
research exploring GANs, multi-representation models, or hybrid pipelines.

2. Related Works

Research on emotion recognition based on electroencephalogram (EEG) signals has grown rapidly in
recent years, with diverse approaches focusing on improving signal representation, model generalization, and
interpretability of classification results. Several recent studies have demonstrated that the success of EEG-
based emotion recognition systems is strongly influenced by how signals are represented prior to
classification, as well as by the model's ability to capture the temporal and spatial dynamics of brain activity.

Prabowo et al. [25] introduced the Asymmetric Windowing Recurrence Plot (AWRP) as a novel strategy
for transforming EEG signals into more informative nonlinear image representations. This method addresses
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the limitations of conventional symmetric recurrence plots (RP), which often contain redundant information.
By applying asymmetric windowing, AWRP generates richer and more discriminative texture patterns,
significantly improving classification accuracy on the DEAP and SEED datasets, achieving results above 99%.
This study highlights the importance of signal representation in emotion classification systems and
demonstrates that nonlinear, image-based transformations can provide substantial accuracy.

In contrast, Roshanaei et al. [26] adopted a different perspective by analyzing functional and effective
connectivity using graph theory to better understand inter-regional brain relationships during emotional
experiences. Their findings emphasize that emotional information is not only reflected in local signal power
(such as band power) but also in cross-regional brain interactions. Using coherence analysis and Granger
causality, the study revealed that beta and gamma frequency bands play key roles in high-intensity negative
emotions, while alpha activity correlates with relaxed states. These results reinforce the view that connectivity-
based representations can complement conventional spectral analysis in understanding the neural dynamics
of emotion.

Efforts to improve EEG model generalization have also become a major research focus. Song et al. [12]
proposed Domain Generalization through Latent Distribution Exploration for motor imagery EEG
classification. Leveraging a multi-branch deep learning architecture that combines EEGNet and
ShallowConvNet, the model learns latent distributions from multiple source domains, allowing it to adapt to
new subjects without recalibration. This approach significantly improved cross-subject accuracy on the BCI
Competition IV and PhysioNet datasets, demonstrating the potential applicability of domain generalization
concepts to EEG-based emotion recognition, which faces similar inter-individual variability challenges.

A broader generalization approach was proposed by Zhong et al. [11] through the EEG-DG (Multi-Source
Domain Generalization) framework. This model is designed to construct domain-invariant feature
representations by optimizing both marginal and conditional distribution alignment across source domains
using Maximum Mean Discrepancy (MMD). By integrating an Inception-ResNet architecture with a dual-
alignment mechanism, EEG-DG achieved accuracies exceeding 80% on the BCI Competition IV dataset
without requiring target data during training. This framework represents a key advancement in developing
adaptive and efficient EEG systems and opens opportunities for similar applications in emotion recognition
involving heterogeneous data across subjects and sessions.

Unlike the aforementioned studies emphasizing generalization, Tao et al. [3] introduced an attention-
based strategy through the Attention-based Convolutional Recurrent Neural Network (ACRNN). The model
combines channel-wise attention to evaluate the contribution of individual EEG channels and self-attention to
capture temporal dependencies between signal segments. Results on the DEAP and DREAMER datasets
showed accuracy improvements exceeding 93%, while also enhancing interpretability by identifying brain
regions most relevant to specific emotions. The main contribution of this study lies in the simultaneous
integration of spatial and temporal attention mechanisms, which strengthens spatio-temporal EEG
representation without compromising model transparency.

Furthermore, de Paula et al. [14] proposed an approach that transforms EEG signals into image
representations using image encoding techniques such as Recurrence Plot (RP), Gramian Angular Field (GAF),
and Markov Transition Field (MTF). By employing two-dimensional CNN architectures, the study achieved
classification accuracies of up to 97% in SSVEP-based EEG, confirming that converting signals into the visual
domain can improve the model's ability to capture nonlinear patterns. This approach reinforces the growing
trend of image-based representations increasingly adopted in EEG emotion recognition using CNN and
transformer architectures.

From the above review, it can be concluded that recent advances in EEG-based emotion recognition
predominantly focus on nonlinear signal representations (e.g., RP and GAF), attention and connectivity
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mechanisms, and models emphasizing generalization and computational efficiency. However, most of these
approaches require large computational resources, extensive training data, and complex model
configurations. In this context, the use of FFT band power as a fundamental feature remains essential as a
strong and interpretable baseline because it effectively captures key spectral information with high efficiency.
When combined with LSTM networks, this approach can model the temporal dynamics of EEG signals

without requiring complex transformations or image-based augmentation.

Therefore, this study remains relevant as it reaffirms the potential of the FFT band power + LSTM method
as a solid starting point before integrating more complex frameworks such as multi-representation CNNs or
GAN-based augmentation. By emphasizing a balance between accuracy, computational efficiency, and
interpretability, this work provides an empirical foundation for developing adaptive, lightweight, and
practical EEG-based emotion recognition systems suitable for real-world applications.

3. Method
3.1. Dataset

This study employs the SEED dataset [24] as the primary data source due to its rich characteristics and
strong relevance to EEG-based emotion classification. The dataset comprises 62-channel EEG recordings
collected from 15 subjects, with each subject participating in three separate experimental sessions conducted
approximately one week apart to enhance data reliability. In each session, subjects were instructed to watch
15 film clips of approximately four minutes each, specifically designed to elicit positive, neutral, and negative
emotional states. This protocol yielded a total of 675 trials (15 subjects x 15 films x 3 sessions), providing
substantial data variability for analysis. Table 1 show the characteristics of the SEED dataset.

Table 1. Characteristics of the SEED Dataset

Attribute Description
Number of Subjects 15 (recorded across three separate sessions)
Number of EEG Channels 62
Sampling Frequency 200 Hz
Stimulus Duration Approximately 4 minutes per film clip
Number of Film Clips 15 (each designed to elicit a specific emotion)
Emotion Types Positive, Neutral, Negative
Data Format Raw EEG (.mat) with ground truth labels from self-assessment
Experimental Scheme Each subject watched 15 film clips, repeated across three sessions at one-week intervals
Total Data 15 subjects x 15 films x 3 sessions = 675 trials

The dataset’s high temporal resolution (200 Hz) and larger number of channels compared to other
datasets, such as DEAP dataset [27], enable a more detailed and comprehensive exploration of EEG signals.
Furthermore, SEED provides discrete and explicit emotion labels, making it particularly suitable for this study,
which focuses on direct classification of three emotional categories without requiring transformation from a
valence-arousal scale. Given these advantages, SEED is an appropriate choice to support the emotion
classification experiments based on FFT band power features.

3.2.  Preprocessing

The original SEED recordings were sampled at 200 Hz. In this study, the signals were intentionally
resampled to 70 Hz before segmentation. This downsampling retains all relevant EEG frequency components
up to the low gamma band, reduces high-frequency noise, and ensures that the 256-sample window
corresponds to approximately 3.66 seconds, which is a commonly used duration for stable FFT band-power
estimation. According to the Nyquist theorem, the maximum frequency that can be represented is half of the
sampling rate. With a 70 Hz sampling frequency, the preserved spectrum extends up to 35 Hz, which fully
covers the delta, theta, alpha, beta, and lower gamma bands that are widely used for EEG-based emotion
recognition [28], [29]. Reducing the sampling rate also suppresses high-frequency noise and muscle artifacts
that fall outside the range of cognitive and affective EEG activity [28], [30]. Through this resampling step, the
preprocessing pipeline produces cleaner, noise-reduced signals while preserving all spectral components
relevant to subsequent FFT band-power extraction.
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The preprocessing phase is an essential part of EEG-based analysis since raw recordings typically contain
artifacts, noise, and subject-specific variations that may disrupt the classification process. To address this, the
present study applies the FFT to convert EEG data from the temporal representation into the frequency
domain. Through this transformation, the signal is decomposed into its constituent frequency components,
which are more interpretable because brain activity is strongly linked to distinct oscillatory patterns. For
instance, delta waves are commonly linked to deep sleep, whereas beta waves correspond to levels of
concentration. Consequently, FFT provides a feature representation that is not only compact but also
physiologically meaningful [31], [32]. The results of the FFT transformation are then used to compute the band
power across five major frequency ranges: d, 6, a, §, and y. Each frequency band holds particular relevance to
cognitive and emotional states. For example, increased activity in the theta band is often associated with
emotional engagement, while the gamma band is related to complex information processing. By extracting the
signal power from each band, the resulting features capture psychological aspects pertinent to emotion
classification [26], [33]. This approach was chosen for its simplicity, computational efficiency, and ability to
provide clearer physiological interpretations compared to more complex image-based representation
methods.

3.3.  Feature Extraction Based on Fast Fourier Transform (FFT)

To capture the spectral characteristics of EEG signals associated with emotional states, this study employs
the FFT as the basis for feature extraction [34]. Each raw EEG recording from 62 channels was resampled to 70
Hz prior to segmentation and feature extraction, ensuring that all subsequent FFT computations operated on
the same frequency basis.. The raw EEG signalis divided into overlapping segments (windows), each
consisting of 256 samples (~ 3.66 seconds) with a step size of 16 samples (= 0.23 seconds). For each time

segment, the time-domain signal x[n]is transformed into its frequency-domain representation using the
Discrete Fourier Transform (DFT), defined as follows:

N-1
X[k]=Y x[n]e ™™ k=0,1,...,N-1 M

n=0

, which

where N denotes the FFT window length. The transformation yields an amplitude spectrum |X [k]

represents the contribution of each frequency component in the EEG signal. Next, the average spectral power
(band power) is computed across five primary frequency bands based on the SEED dataset configuration with

cutoff frequencies at [3, 4, 8, 14, 32] Hz. For each frequency band [ S /s ] , the average spectral power (Power
Spectral Density, PSD) is calculated using the following equation:

1 &
B =37 21X (K] @

where M represents the number of frequency bins within the defined range. This process produces five
spectral power values for each channel, resulting in a total of 62 x 5 = 310 features per EEG segment. This
approach preserves the spectral information of each EEG channel in both spatial and temporal dimensions
while significantly reducing data dimensionality compared to raw signals. The resulting features in the
frequency domain are then provided as inputs to the Long Short-Term Memory (LSTM) classifier, as detailed
in Subsection 2.4.

The FFT band power was selected as the primary feature because EEG rhythms are well localized within
canonical frequency ranges with well-established physiological relevance. Computing the power within 6, 6,
a, B, and y bands provides a compact summary of neural oscillations associated with arousal, attention, and
affective processing, while eliminating the need for high-capacity or image-based models. A band-pass filter
between 1-50 Hz was applied to remove slow drifts and muscle artifact. Limiting the analysis to frequencies
below 50 Hz minimizes contamination from high-frequency artifacts yet retains lower y activity, which has
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been reported as informative for emotion recognition. This configuration achieves a balance between
physiological interpretability, robustness to noise, and computational efficiency [26], [31]-[33].

3.4. Long Short-Term Memory (LSTM) Classifier

The classification model employed in this study is a five-layer stacked Long Short-Term Memory (LSTM)
network implemented using Keras/TensorFlow. LSTM-based models, including stacked, have demonstrated
strong performance in emotion recognition tasks using FFT or similar frequency-domain features [35], [36].
The input consists of FFT band power features derived from 62 EEG channels across five frequency bands,
formatted into a three-dimensional structure [batch, timestep, feature] to ensure compatibility with the LSTM
architecture. Each LSTM layer is followed by batch normalization to stabilize activation distributions and
dropout with ratios ranging from 0.2 to 0.3 to reduce the risk of overfitting. As illustrated in Figure 1, the
architecture begins with an LSTM layer containing 512 units, followed sequentially by layers with 256, 128,
64, and 32 units, respectively. The final output is projected onto a Dense layer with three units — corresponding
to the number of emotion classes —using a softmax activation function. This configuration enables the model
to capture nonlinear temporal dynamics in EEG feature representations while preserving relevant sequential
information through the gating mechanisms inherent to LSTM networks. The detailed configuration and
training parameters of the classifier are summarized in Table 2, which lists the key hyperparameter
specifications, including layer structure, normalization strategy, regularization methods, and training settings
such as loss function, optimizer, learning rate, batch size, and validation scheme.

Table 2. Hyperparameter Specifications of the LSTM classifier

Component Specification
Input FFT band power features (62 channels x 5 frequency bands), formatted as [batch, timestep, feature]
LSTM Architecture 512 — 256 — 128 — 64 — 32 units (each layer followed by BN + Dropout)
Normalization Batch normalization after each LSTM layer
Regularization Dropout (0.2-0.3)
Output Layer Dense (3) + Softmax activation
Loss Function Categorical cross-entropy
Optimizer Adam (learning rate = le-4)
Epochs 50
Batch Size 150
Validation Stratified 10-fold cross-validation

Evaluation Metrics ~ Model performance assessed using accuracy, F1-measure, Cohen’s kappa coefficient, and confusion matrix analysis
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Figure 1. LSTM Architecture
3.5. Experimental setting

The experimental design in this study was structured systematically to ensure that all stages of data
processing, feature extraction, model training, and performance evaluation were conducted in a consistent
and reproducible manner. The experimental workflow consisted of five main stages: (1) EEG signal acquisition
and segmentation, (2) transformation and feature extraction using the FFT, (3) data normalization using
StandardScaler, (4) classification model training based on LSTM, and (5) evaluation using stratified 10-fold
cross-validation with quantitative performance metrics. Each stage was executed sequentially with consistent
parameters and configurations across all iterations.

Stage 1: EEG Signal Acquisition and Segmentation

The EEG data used in this study were obtained from the SEED dataset, which consists of multichannel
EEG recordings comprising 62 channels with a sampling frequency of 200 Hz. Each EEG recording was
collected from 15 participants across three separate sessions, with each session containing 15 film clips of
approximately four minutes in duration. All EEG signals were stored in raw EEG (.mat) format, represented
as amplitude matrices over time.

Before applying the transformation, each EEG channel was segmented into overlapping time windows.
The window length was set to 256, which corresponds to approximately 3.66 seconds after the signals were
resampled to 70 Hz. All segmentation and feature extraction steps were performed on the resampled data.
The step size is 16 samples, resulting in an overlap of 93.75% between consecutive windows. The overlapping
segmentation was applied to retain temporal continuity within the EEG signal and to ensure that the model
received sufficient temporal dynamics for each observation. Each window was treated as an independent
observation unit during feature extraction. To ensure consistency across the entire pipeline, all SEED
recordings were uniformly resampled from 200 Hz to 70 Hz before segmentation.
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The segmentation structure is illustrated in Figure 2, showing that each EEG channel was divided into
multiple overlapping short-duration segments. Each segment was subsequently transformed into the
frequency domain, and the resulting FFT representations were aggregated to form a comprehensive feature
set for the classification stage.

Stage 2: FFT Transformation and Band Power Feature Extraction

After segmentation, each EEG segment x[n]was transformed from the time domain to the frequency
domain using the FFT. FFT decomposes the EEG signal into its constituent frequency components. The
transformation was applied to each channel and time window. The resulting output was a complex-valued

frequency spectrum vector X [k], representing the amplitude and phase contributions at each frequency index
(k) . From the FFT output, only the magnitude spectrum (|X [k]|) was utilized, as it reflects the relative strength

of each frequency component without considering phase information.

To obtain features representing the spectral characteristics of brain activity, the magnitude values (|X [k]|)

were grouped into five canonical EEG frequency bands: 6 (1-3 Hz), 6 (4-7 Hz), a (8-13 Hz), p (14-31 Hz), and
Y (32-35 Hz). For each frequency band [ f,, 1, ], the mean magnitude value was computed using the following

equation:

1 &
B = ﬁk; X [k]] ®)
where (M) is the number of frequency bins within the specified band. This computation produced five band

power values per EEG channel. Given 62 channels, each EEG segment yielded a total of 62 x 5 = 310 features.
All channel-wise features were then concatenated into a single feature vector of 310 dimensions, representing
the spectral energy distribution of the EEG signal within that segment.

The complete process is depicted in Figure 2, which consists of four main blocks: (1) raw EEG signal input,
(2) overlapping segmentation with 256-sample windows and 16-sample step size, (3) FFT transformation and
mean magnitude calculation within each frequency band, and (4) feature assembly by concatenating all
channels. The diagram clearly illustrates how the EEG signal was converted into a numerical representation
suitable for subsequent classification.

Stage 3: Feature Normalization

After feature extraction, all feature vectors were normalized. Normalization was applied separately within
each training fold to prevent data leakage. Then the resulting mean and standard deviation parameters were
subsequently used to transform the corresponding test data within the same fold. This ensured that all
extracted features followed a standardized distribution with zero mean and unit variance. This normalization
step is important because FFT-derived features across frequency bands show different numerical ranges.
Without normalization, frequency bands with higher magnitudes (such as p and y) might dominate the
learning process and bias the model toward those bands. Normalization also facilitates faster and more stable
convergence during neural network training, as gradients remain consistent across feature dimensions.

Dwi Wahyu Prabowo, Human Emotion Classification ... 10.30983/knowbase.v5i2.10145 d3152



http://dx.doi.org/10.30983/knowbase.v5i2.10145

Knowbase : International Journal of Knowledge In Database
Vol. 05 No. 02 July - December 2025 pp, 145-161

(1) Input EEG (per subject, per session)

62 channel (SEED dataset)

v chl : VW “h""‘"’“"“’U.VW\“ — AN N AANAAAAAN AR AN ASARARS AN :
' och? Vrran MJ\.V\,’J A~ AN A A AN AN AR A A NAA A,
E ché2 : \,Muwhm.«.m’u'v\}\,w AAA NN N AAANAAANNAIAANAAAASASARRARASAS

i time/sample —» 0 256 272 288 !
i — ' | i
E window #1 | 256 sampl ] :
' window #2 b 256 sumple——————| :
E window #3 } 256 sample | E
. window's length : 256 sample (= 3.66 scconds)

. step size (overlapping) : 16 sample (= 0.23 seconds)

Mean X[k] per band
—>

) FFT :
Time segment z[n] —+ X[k] {P;, Py, Py, Ps, P} :

EChanneI-wise band powers: !
chl: {Priy PP; R)‘! 13.“37 P‘)};
ch2: {Pg, Py, Pa, Pﬁ, P,).},

ch62: {Ps, Py, P, Ps, P,}

‘Then concatenate all channel-wise band features,
i

:Ps, Py, Py, Pg, P, = Feature vector size = 62 x 5 = 310

Figure 2. Illustration of EEG signal segmentation and FFT-based feature extraction. Each channel is divided into overlapping
windows, transformed into the frequency domain using FFT, averaged within five canonical frequency bands (5, 6, a, 3, y), and
concatenated into a 310-dimensional feature vector per segment. All EEG recordings were resampled to 70 Hz prior to segmentation,
ensuring consistent temporal resolution across all overlapping windows.

Stage 4: LSTM Model Training

The next stage involved training the classification model using a five-layer stacked LSTM network. The
detailed architecture is described in Subsection 3.4, but in summary, it consisted of sequential LSTM layers
with 512, 256, 128, 64, and 32 units, respectively. Each LSTM layer was followed by batch normalization and
dropout (ranging from 0.2 to 0.3) to stabilize training and reduce overfitting. The final output layer was a Dense
layer with three neurons and a softmax activation function, corresponding to the three emotion categories:
positive, neutral, and negative. The model was compiled using the categorical cross-entropy loss function and
optimized with the Adam optimizer at a learning rate of 1x10~*. Training was performed for 50 epochs with a
batch size of 150, without early stopping, to maintain consistency across all folds. All experiments were executed
in a GPU-accelerated (DGX-1 V100) TensorFlow environment to ensure uniform training speed and
reproducibility. Identical initialization and parameter configurations were applied across iterations to
eliminate random variability in training outcomes.
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Stage 5: Model Evaluation and Validation

Model performance was evaluated using stratified 10-fold cross-validation. The dataset was divided into
ten subsets with balanced distributions across the three emotion classes (positive, neutral, and negative). In
each iteration, nine subsets were used for training and one for testing. This process was repeated ten times so
that every subset served once as the test data. This validation approach provided more stable and
representative performance estimates than hold-out validation and better assessed the model’s ability to
generalize across subject-level variations. Three key metrics were used to evaluate performance: accuracy, F1-
score, and Cohen’s kappa.

e Accuracy measured the overall proportion of correctly predicted samples.

e  Fl-score evaluated the harmonic balance between precision and recall, which is particularly relevant in
cases of minor class imbalance.

e Cohen’s kappa served as an additional, stricter validation metric by accounting for the probability of
random agreement between model predictions and actual labels. A kappa value greater than 0.80
indicates almost perfect agreement, signifying a high level of consistency between the model’s
predictions and the ground truth.

EEG Data Input
(62 channels)

—

Preprocessing
- Segmentation
- FFT (1-50 Hz)

— —

Feature Extraction
- Band Power

9,0,a, B,y

\—l—/

Normalization
(StandardScaler)

Model Training &
Validation

- 10-fold Stratified CV
-LST™M

- Adam + Cross-Entropy

Performance Evaluation
Accuracy, F1-Score, Kappa

LSTM Model
Output

Figure 3. The complete experimental pipeline of the proposed EEG-based emotion recognition framework. The process includes
data acquisition from 62 EEG channels, segmentation and FFT-based preprocessing, band power feature extraction across §, 0, a, 3, and
Y frequency bands, feature normalization using StandardScaler, model training and validation with a 10-fold stratified cross-validation

scheme, and final performance evaluation using accuracy, F1-score, and Cohen’s kappa metrics.

The complete experimental pipeline is summarized in Figure 3, which illustrates the systematic workflow
from raw EEG acquisition, segmentation, and FFT-based feature extraction to normalization, LSTM training,
and cross-validation-based evaluation. The diagram provides a comprehensive overview of how each
processing block contributes to the construction of an efficient and generalizable EEG-based emotion
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classification system. Through this structured experimental design and validation procedure, the study
ensures that the classification results reflect stable, measurable, and unbiased model performance, free from
data imbalance or information leakage across folds. In this context, the SEED dataset does not require any
balancing procedure because its emotion labels are uniformly distributed. Each subject provides 15 samples
for each class (positive, neutral, and negative), which results in an overall balanced dataset as reported by
Zheng & Lu [24] and Li et al. [37]. The approach also guarantees that the results can be replicated by future
studies using the same dataset and configuration.

4. Results and Discussion
4.1. Experimental Results per Fold

The experimental findings summarized in Table 3 report the model’s performance in classifying emotions
using FFT band power features evaluated on the SEED dataset through a stratified 10-fold validation scheme.
The obtained accuracy scores across folds vary only slightly, ranging from 0.8978 to 0.9001 with an average of
0.8987. This indicates that the model performs consistently across all data partitions without any significant
performance degradation in specific folds. Such consistency confirms that the implemented pipeline is stable
and not strongly affected by variations in data subsets.

In addition to accuracy, the Fl-score values ranging from 0.9000 to 0.9023 demonstrate a good balance
between precision and recall. With an average of 0.9010, the results indicate that the model is capable of
recognizing all emotion classes (positive, neutral, and negative) in a balanced manner rather than focusing
only on the dominant class. The stability of the F1-score further supports the claim that FFT band power
features provide sufficient discriminative information to distinguish emotional states effectively, despite being
a relatively simple representation compared to image-based EEG features.

Cohen’s kappa metric also provides an important perspective, yielding an average value of 0.8481.
According to Landis and Koch’s interpretation, this falls into the “almost perfect agreement” category,
meaning the model’s predictions show a very high level of agreement with the true labels, even after
accounting for random chance. This demonstrates that the model’s performance is not only characterized by
high accuracy but also statistically valid in reflecting its classification capability. In other words, the model
truly differentiates between emotion classes rather than relying on data distribution biases.

Meanwhile, the loss values remain stable, with an average of 0.1763, indicating that the model consistently
minimizes prediction errors during both training and testing. The very small variation in loss across folds
(0.1745-0.1779) further confirms that the model exhibits strong generalization ability toward unseen data. The
combination of accuracy, Fl-score, kappa, and loss results demonstrates that FFT band power serves as a
robust baseline for EEG-based emotion classification and provides a solid foundation for future research
involving more complex approaches, such as multi-representation CNNs or GAN-based data augmentation.

Table 3. Emotion classification results on the SEED dataset using FFT band power

Fold  Accuracy Flscore Kappa Loss
0.8997 0.9019 0.8495  0.1753

Jay

2 0.8990 0.9012 0.8485  0.1767
3 0.8985 0.9007 0.8477 01779
4 0.8980 0.9001 0.8470  0.1755
5 0.8978 0.9000 0.8467  0.1768
6 0.9001 0.9023 0.8501  0.1745
7 0.8974 0.8996 0.8461  0.1765
8 0.8994 0.9016 0.8491  0.1765
9 0.8991 0.9013 0.8486  0.1765
10 0.8987 0.9009 0.8480  0.1765
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4.2.  Overall Performance and Discussion

The experimental results indicate that the average accuracy nearly reached 90%, specifically 89.87%. This
is a relatively high value for a baseline approach that solely utilizes FFT band power as the main feature. Given
that FFT is a simple method focusing on energy representation across specific frequency bands, this finding
demonstrates that frequency information in EEG signals has a strong correlation with emotional states.
Although image-based approaches such as recurrence plot (RP) and spectrogram (SP) are often reported to
yield superior performance, the present results emphasize that the classical FFT-based approach remains
relevant and competitive for emotion classification [25], [38], [39].

Beyond accuracy, the stable Fl-score around 0.90 provides a more comprehensive perspective on the
model’s performance. The F1-score, which harmonizes precision and recall, shows that the model is capable
of identifying the majority class and maintains balanced recognition across all emotion categories (positive,
neutral, and negative). This is essential because EEG experiments often involve class imbalance. When relying
solely on accuracy, models may exhibit bias toward dominant classes. However, the consistently high F1-score
confirms that the FFT band power pipeline successfully maintains balanced performance across emotion
classes.

Cohen’s kappa further reinforces the validity of these findings. With an average of 0.848, the score falls
within the “almost perfect agreement” category according to the Landis and Koch interpretation [40]. This
indicates that the model’s predictions exhibit a very high level of agreement with the ground truth labels, even
after adjusting for random chance. The kappa metric is particularly important in EEG-based emotion
classification, which is susceptible to inter-subject variability and signal noise. With Kappa > 0.80, it can be
concluded that the model’s performance is not random but genuinely reflects its capability to recognize
emotional patterns in EEG signals.

Result stability is another key point in this analysis. The variation across folds is extremely small, with a
standard deviation in accuracy of less than 0.001. This demonstrates that the experimental pipeline is robust
against variations in training and testing data. In other words, the model is not overly sensitive to changes in
data subsets, indicating good generalization ability. Such stability is essential for real-world applications of
EEG-based emotion recognition systems, where incoming data may differ from training data.

Overall, the consistently strong results across all evaluation metrics (classification accuracy, F1-measure,
and Cohen’s kappa coefficient) demonstrate that the FFT band power method serves as a strong baseline for
EEG-based emotion recognition research. Although the results do not yet surpass those of deep learning
approaches involving multi-representations or data augmentation, the FFT-based pipeline provides
competitive performance with higher interpretability and lower computational complexity. This foundation
can support future research aimed at developing more advanced models, such as combining FFT with RP/SP
or employing GANSs, to further improve accuracy without compromising the demonstrated stability and
interpretability of the current approach.

4.3. Analysis of Confusion Matrix

The results presented and visualized in Figure 4 indicate that the emotion classification model based on
FFT band power can accurately recognize all three emotion classes with relatively high performance. Across
the 10-fold cross-validation, the average number of correct predictions reached 64,269 for the positive class,
70,368 for the neutral class, and 65,378 for the negative class. These results show that the distribution of correct
predictions is well balanced across all classes, suggesting that no emotion category was neglected. In other
words, the model does not show bias toward any specific emotion class. This finding demonstrates that band
power distributions contribute substantially to distinguishing emotional states.

However, Figure 4 reveals a consistent confusion pattern, primarily involving the neutral class.
Specifically, 7,614 positive samples and 7,574 negative samples were misclassified as neutral. The darker
shades in the [Positive — Neutral] and [Negative — Neutral] cells highlight the model’s tendency to safely
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assign uncertain predictions to the neutral category. This phenomenon is reasonable, as the neutral emotional
state is physiologically positioned near the midpoint of the positive-negative spectrum, causing its EEG
patterns to often resemble both other classes.

Conversely, misclassifications from the neutral class to other classes were relatively small, with 1,351
instances to the positive class and 2,464 to the negative class. This indicates that the model tends to be more
conservative when classifying neutral signals. Such behavior reduces the risk of extreme prediction errors,
such as incorrectly labeling negative emotions as positive. However, the trade-off is a slight decrease in
sensitivity when detecting positive and negative emotions. This pattern is consistent with multiple studies
who reported that the neutral emotion class frequently serves as a buffer or intermediary zone between
positive and negative emotions in EEG-based emotion classification systems [41], [42].

Average Confusion Matrix (10-Fold CV)
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50000

F 40000
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Pred Positive Pred Neutral Pred Negative
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Figure 4. Heatmap Visualization of the Average Confusion Matrix (10-Fold CV)

Overall, Figure 4 demonstrates that the FFT band power pipeline produces a stable model with a high
level of agreement with the ground truth labels. This is supported by a Cohen’s kappa value of 0.848, which
falls within the “almost perfect agreement” category according to Landis and Koch (1977) [40]. Therefore,
although some confusion remains within the neutral class, the model’s performance remains consistent and
statistically valid. This confusion matrix analysis further reinforces the claim that FFT band power serves as a
strong baseline for EEG-based emotion recognition, providing a foundation for future improvements through
multi-representation approaches [43] or GAN-based data augmentation [16], [18], [19], [44] to enhance inter-
class separability.

4.4. Comparison with Related Works

To contextualize the performance of the proposed FFT-based LSTM model, a comparison with several
representative studies on SEED is presented in Table 4. These studies employ various data augmentation
strategies, primarily through noise injection or the use of generative adversarial networks (GANs), which are
designed to increase data diversity and improve classification performance in limited-data scenarios such as
EEG emotion recognition.

Wang et al. [45]enhanced the SEED dataset by adding Gaussian noise and trained a ResNet18 classifier,
achieving an accuracy of 75.00 percent. Despite the additional artificially generated samples, the performance
remains relatively modest, suggesting that noise-based augmentation may not effectively capture the complex
temporal-spectral characteristics of EEG emotional dynamics. Luo and Lu [46] introduced a conditional
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Wasserstein GAN (c(WGAN) to generate synthetic samples and used an SVM classifier, yielding an accuracy
of 86.96 percent. Luo et al. [47] further extended this approach by employing a conditional Boundary
Equilibrium GAN (cBEGAN), producing a slightly improved accuracy of 87.56 percent. Zhang et al. [48]
developed a multi-generator cWGAN (MG-cWGAN) framework to better model EEG variability, yet the
reported accuracy was 84.00 percent.

Studies Methods Accuracy (%)
Wang et al. [45] Gaussian noise + ResNet18 75.00
Luo & Lu [46] cWGAN + SVM 86.96
Luo etal. [47] cBEGAN + SVM 87.56
Zhang et al. [48] MG-cWGAN + SVM 84.00
This study No augmentation + (FFT & LSTM) 89.87

Compared to these augmentation-based methods, the proposed approach demonstrates stronger
performance even without any synthetic sample generation. As shown in Table 4, this study achieved an
accuracy of 89.87 percent using only the original SEED data and a straightforward feature extraction pipeline
based on FFT band power. This performance advantage highlights the discriminative power of spectral
features when combined with a deep sequential classifier such as LSTM. Furthermore, the stability
demonstrated across the folds in this study indicates that high-quality spectral representations can offer a
reliable foundation without the need for computationally intensive augmentation strategies.

It is also important to note that Section 4.3 identified remaining confusion between positive and negative
classes converging toward the neutral class, suggesting potential benefits from controlled data expansion.
Therefore, although the present study demonstrates competitive performance without augmentation, the
findings are well aligned with future research directions involving GAN-based augmentation, particularly
using c(WGAN, cBEGAN, or MG-cWGAN frameworks. Integrating these generative models with FFT-based
representations may further enhance class separability and improve robustness in emotion classification
systems.

5. Conclusion

This study successfully demonstrates that FFT band power can serve as a strong baseline for EEG-based
emotion classification. With an average accuracy of 89.87%, an F1-score of 90.10%, and a Cohen’s kappa of
0.848, the proposed method exhibits stable performance and high statistical validity. The consistent stability
across folds indicates that the experimental pipeline is not only reliable for specific data subsets but also
possesses good generalization capability. These findings confirm that although FFT band power is a relatively
simple method, it remains relevant and effective for extracting essential information from EEG signals,
particularly in the context of human emotion analysis. For future research, this baseline can be extended by
integrating more advanced approaches to enhance model accuracy and generalization. One potential direction
is the use of multi-representation frameworks that combine recurrence plot (RP) and spectrogram (SP) features
to capture both nonlinear characteristics and time-frequency distributions of EEG signals. Another alternative
is the application of generative adversarial network (GAN)-based data augmentation to overcome the
limitations of sample size and increase training data diversity. By combining the strengths of classical methods
such as FFT with modern deep learning approaches, future studies are expected to develop EEG-based
emotion recognition systems that are more accurate, robust, and suitable for real-world applications.
Furthermore, comparative results reported in the literature show that a straightforward FFT and LSTM
pipeline can surpass several augmentation-based methods, underscoring its value as a strong and
computationally efficient baseline for future EEG-based emotion recognition research.
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