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This study investigates human emotion recognition using 
electroencephalogram (EEG) signals, focusing on the Shanghai Jiao Tong 
University Emotion EEG Dataset (SEED), which consists of recordings from 
62 EEG channels categorized into three emotion classes: positive, neutral, and 
negative. The main challenges in EEG-based emotion classification include 
the limited amount of available data and the nonlinear, non-stationary nature 
of EEG signals. To address these challenges, this study evaluates the 
effectiveness of the Fast Fourier Transform (FFT) band power as input 
features and employs a stacked Long Short-Term Memory (LSTM) network 
as the classifier. Model validation was conducted using stratified 10-fold 
cross-validation, and performance was assessed using accuracy, F1-score, 
and Cohen’s kappa metrics. Experimental results show that the proposed 
method achieved an average accuracy of 89.87%, an F1-score of 90.10%, and 
a Cohen’s kappa value of 0.848, with minimal variation across folds, 
demonstrating high model stability. Unlike many recent studies that rely on 
image-based representations or Generative Adversarial Networks (GAN)-
driven data augmentation, this study demonstrates that FFT band power 
combined with a sequential LSTM classifier can achieve strong performance 
without synthetic data generation or complex feature transformations. These 
findings indicate that the combination of FFT band power features and the 
LSTM classifier can serve as a solid baseline for further research. 
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1. Introduction 

The development of brain–computer interface (BCI) technology has advanced rapidly, enabling a wide 

range of applications in healthcare, education, human–computer interaction, and entertainment. One of the 

most prominent research areas in this domain is emotion recognition based on electroencephalogram (EEG) 

signals [1]–[3]. The ability to detect emotions in real time is important in applications such as psychological 

therapy, mental health monitoring, and enhancing user experience in virtual reality environments. EEG-based 

approaches are considered superior to those relying on facial expressions or speech, as EEG directly reflects 

neural activity and is relatively resistant to manipulation [4]–[6]. 
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However, several major challenges remain. First, EEG signals are nonlinear, nonstationary, and highly 

complex, making feature extraction difficult. These characteristics often render conventional methods, such as 

time- or frequency-domain analysis, insufficient to capture the full dynamics of EEG signals [7]–[9]. Second, 

the limited amount of data poses a serious constraint. EEG data collection requires specialized equipment, 

high costs, extended recording sessions, and limited subject participation. Consequently, classification models 

often suffer from generalization issues, particularly when trained on small datasets [10]–[13]. 

Various approaches have been proposed to address these challenges. For instance, EEG signals have been 

represented as images such as recurrence plots (RP) and spectrograms (SP), which are then processed using 

convolutional neural networks (CNNs). This approach leverages the power of deep learning to capture 

complex patterns within brain signals [14], [15]. Meanwhile, to mitigate data scarcity, recent studies have 

employed data augmentation techniques based on generative adversarial networks (GANs), which can 

generate synthetic samples with characteristics similar to real data. As a result, research in this field is evolving 

toward the integration of advanced representation methods and data augmentation strategies [16]–[19]. 

Nevertheless, image-based representation and data augmentation approaches often require substantial 

computational resources and complex processing pipelines. As an alternative, Fast Fourier transform (FFT) 

band power remains a widely used feature extraction method due to its simplicity and computational 

efficiency [20], [21]. The FFT decomposes EEG signals into several frequency bands—δ, θ, α, β, and γ—each 

associated with specific cognitive and emotional states, thus providing a solid foundation for emotion 

classification. Furthermore, FFT is relatively easy to implement and computationally efficient, making it a 

relevant baseline before incorporating image-based representations [22], [23]. 

Based on this background, the present study focuses on EEG-based emotion classification using features 

derived from FFT band power. The SEED dataset [24] was employed, as it is widely acknowledged as a reliable 

benchmark for emotion recognition research due to its high quality and experimental richness. Model 

validation was carried out through a stratified 10-fold cross-validation scheme to ensure robustness and 

generalizability. Model performance was assessed using three evaluation metrics—accuracy, F1-score, and 

Cohen’s kappa—with the latter providing a more rigorous measure of agreement that accounts for random 

chance. The outcomes of this research are intended to establish a strong baseline for future comparisons with 

more advanced methods, including multi-representation convolutional neural networks (CNNs) and 

generative adversarial network (GAN)-based data augmentation techniques. 

To situate this work within recent developments, it is important to note that substantial progress has been 

made through GAN-based augmentation, nonlinear image representations, and attention-based deep learning 

models. However, relatively little research has examined how effectively a lightweight and interpretable 

spectral approach can perform without synthetic data or high-capacity architectures. Existing studies often 

report accuracy gains after augmentation or complex transformations, yet the performance of a purely 

frequency-domain baseline has not been revisited systematically. Therefore, this study fills that gap by 

evaluating FFT band power combined with an LSTM classifier as an efficient baseline that can perform 

competitively even without augmentation. This contribution provides a clear comparison point for future 

research exploring GANs, multi-representation models, or hybrid pipelines. 

2. Related Works 

Research on emotion recognition based on electroencephalogram (EEG) signals has grown rapidly in 

recent years, with diverse approaches focusing on improving signal representation, model generalization, and 

interpretability of classification results. Several recent studies have demonstrated that the success of EEG-

based emotion recognition systems is strongly influenced by how signals are represented prior to 

classification, as well as by the model's ability to capture the temporal and spatial dynamics of brain activity. 

Prabowo et al. [25] introduced the Asymmetric Windowing Recurrence Plot (AWRP) as a novel strategy 

for transforming EEG signals into more informative nonlinear image representations. This method addresses 
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the limitations of conventional symmetric recurrence plots (RP), which often contain redundant information. 

By applying asymmetric windowing, AWRP generates richer and more discriminative texture patterns, 

significantly improving classification accuracy on the DEAP and SEED datasets, achieving results above 99%. 

This study highlights the importance of signal representation in emotion classification systems and 

demonstrates that nonlinear, image-based transformations can provide substantial accuracy. 

In contrast, Roshanaei et al. [26] adopted a different perspective by analyzing functional and effective 

connectivity using graph theory to better understand inter-regional brain relationships during emotional 

experiences. Their findings emphasize that emotional information is not only reflected in local signal power 

(such as band power) but also in cross-regional brain interactions. Using coherence analysis and Granger 

causality, the study revealed that beta and gamma frequency bands play key roles in high-intensity negative 

emotions, while alpha activity correlates with relaxed states. These results reinforce the view that connectivity-

based representations can complement conventional spectral analysis in understanding the neural dynamics 

of emotion. 

 

Efforts to improve EEG model generalization have also become a major research focus. Song et al. [12] 

proposed Domain Generalization through Latent Distribution Exploration for motor imagery EEG 

classification. Leveraging a multi-branch deep learning architecture that combines EEGNet and 

ShallowConvNet, the model learns latent distributions from multiple source domains, allowing it to adapt to 

new subjects without recalibration. This approach significantly improved cross-subject accuracy on the BCI 

Competition IV and PhysioNet datasets, demonstrating the potential applicability of domain generalization 

concepts to EEG-based emotion recognition, which faces similar inter-individual variability challenges. 

A broader generalization approach was proposed by Zhong et al. [11] through the EEG-DG (Multi-Source 

Domain Generalization) framework. This model is designed to construct domain-invariant feature 

representations by optimizing both marginal and conditional distribution alignment across source domains 

using Maximum Mean Discrepancy (MMD). By integrating an Inception-ResNet architecture with a dual-

alignment mechanism, EEG-DG achieved accuracies exceeding 80% on the BCI Competition IV dataset 

without requiring target data during training. This framework represents a key advancement in developing 

adaptive and efficient EEG systems and opens opportunities for similar applications in emotion recognition 

involving heterogeneous data across subjects and sessions. 

Unlike the aforementioned studies emphasizing generalization, Tao et al. [3] introduced an attention-

based strategy through the Attention-based Convolutional Recurrent Neural Network (ACRNN). The model 

combines channel-wise attention to evaluate the contribution of individual EEG channels and self-attention to 

capture temporal dependencies between signal segments. Results on the DEAP and DREAMER datasets 

showed accuracy improvements exceeding 93%, while also enhancing interpretability by identifying brain 

regions most relevant to specific emotions. The main contribution of this study lies in the simultaneous 

integration of spatial and temporal attention mechanisms, which strengthens spatio-temporal EEG 

representation without compromising model transparency. 

Furthermore, de Paula et al. [14] proposed an approach that transforms EEG signals into image 

representations using image encoding techniques such as Recurrence Plot (RP), Gramian Angular Field (GAF), 

and Markov Transition Field (MTF). By employing two-dimensional CNN architectures, the study achieved 

classification accuracies of up to 97% in SSVEP-based EEG, confirming that converting signals into the visual 

domain can improve the model's ability to capture nonlinear patterns. This approach reinforces the growing 

trend of image-based representations increasingly adopted in EEG emotion recognition using CNN and 

transformer architectures. 

From the above review, it can be concluded that recent advances in EEG-based emotion recognition 

predominantly focus on nonlinear signal representations (e.g., RP and GAF), attention and connectivity 
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mechanisms, and models emphasizing generalization and computational efficiency. However, most of these 

approaches require large computational resources, extensive training data, and complex model 

configurations. In this context, the use of FFT band power as a fundamental feature remains essential as a 

strong and interpretable baseline because it effectively captures key spectral information with high efficiency. 

When combined with LSTM networks, this approach can model the temporal dynamics of EEG signals 

without requiring complex transformations or image-based augmentation. 

Therefore, this study remains relevant as it reaffirms the potential of the FFT band power + LSTM method 

as a solid starting point before integrating more complex frameworks such as multi-representation CNNs or 

GAN-based augmentation. By emphasizing a balance between accuracy, computational efficiency, and 

interpretability, this work provides an empirical foundation for developing adaptive, lightweight, and 

practical EEG-based emotion recognition systems suitable for real-world applications. 

3. Method 

3.1. Dataset 

This study employs the SEED dataset [24] as the primary data source due to its rich characteristics and 

strong relevance to EEG-based emotion classification. The dataset comprises 62-channel EEG recordings 

collected from 15 subjects, with each subject participating in three separate experimental sessions conducted 

approximately one week apart to enhance data reliability. In each session, subjects were instructed to watch 

15 film clips of approximately four minutes each, specifically designed to elicit positive, neutral, and negative 

emotional states. This protocol yielded a total of 675 trials (15 subjects × 15 films × 3 sessions), providing 

substantial data variability for analysis. Table 1 show the characteristics of the SEED dataset. 

Table 1. Characteristics of the SEED Dataset 
Attribute Description 

Number of Subjects 15 (recorded across three separate sessions) 

Number of EEG Channels 62 

Sampling Frequency 200 Hz 

Stimulus Duration Approximately 4 minutes per film clip 

Number of Film Clips 15 (each designed to elicit a specific emotion) 

Emotion Types Positive, Neutral, Negative 

Data Format Raw EEG (.mat) with ground truth labels from self-assessment 

Experimental Scheme Each subject watched 15 film clips, repeated across three sessions at one-week intervals 

Total Data 15 subjects × 15 films × 3 sessions = 675 trials 

The dataset’s high temporal resolution (200 Hz) and larger number of channels compared to other 

datasets, such as DEAP dataset [27], enable a more detailed and comprehensive exploration of EEG signals. 

Furthermore, SEED provides discrete and explicit emotion labels, making it particularly suitable for this study, 

which focuses on direct classification of three emotional categories without requiring transformation from a 

valence–arousal scale. Given these advantages, SEED is an appropriate choice to support the emotion 

classification experiments based on FFT band power features. 

3.2. Preprocessing 

The original SEED recordings were sampled at 200 Hz. In this study, the signals were intentionally 

resampled to 70 Hz before segmentation. This downsampling retains all relevant EEG frequency components 

up to the low gamma band, reduces high-frequency noise, and ensures that the 256-sample window 

corresponds to approximately 3.66 seconds, which is a commonly used duration for stable FFT band-power 

estimation. According to the Nyquist theorem, the maximum frequency that can be represented is half of the 

sampling rate. With a 70 Hz sampling frequency, the preserved spectrum extends up to 35 Hz, which fully 

covers the delta, theta, alpha, beta, and lower gamma bands that are widely used for EEG-based emotion 

recognition [28], [29]. Reducing the sampling rate also suppresses high-frequency noise and muscle artifacts 

that fall outside the range of cognitive and affective EEG activity [28], [30]. Through this resampling step, the 

preprocessing pipeline produces cleaner, noise-reduced signals while preserving all spectral components 

relevant to subsequent FFT band-power extraction. 

http://dx.doi.org/10.30983/knowbase.v5i2.10145
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The preprocessing phase is an essential part of EEG-based analysis since raw recordings typically contain 

artifacts, noise, and subject-specific variations that may disrupt the classification process. To address this, the 

present study applies the FFT to convert EEG data from the temporal representation into the frequency 

domain. Through this transformation, the signal is decomposed into its constituent frequency components, 

which are more interpretable because brain activity is strongly linked to distinct oscillatory patterns. For 

instance, delta waves are commonly linked to deep sleep, whereas beta waves correspond to levels of 

concentration. Consequently, FFT provides a feature representation that is not only compact but also 

physiologically meaningful [31], [32]. The results of the FFT transformation are then used to compute the band 

power across five major frequency ranges: δ, θ, α, β, and γ. Each frequency band holds particular relevance to 

cognitive and emotional states. For example, increased activity in the theta band is often associated with 

emotional engagement, while the gamma band is related to complex information processing. By extracting the 

signal power from each band, the resulting features capture psychological aspects pertinent to emotion 

classification [26], [33]. This approach was chosen for its simplicity, computational efficiency, and ability to 

provide clearer physiological interpretations compared to more complex image-based representation 

methods. 

3.3. Feature Extraction Based on Fast Fourier Transform (FFT) 

To capture the spectral characteristics of EEG signals associated with emotional states, this study employs 

the FFT as the basis for feature extraction [34]. Each raw EEG recording from 62 channels was resampled to 70 

Hz prior to segmentation and feature extraction, ensuring that all subsequent FFT computations operated on 

the same frequency basis.. The raw EEG signalis divided into overlapping segments (windows), each 

consisting of 256 samples (≈ 3.66 seconds) with a step size of 16 samples (≈ 0.23 seconds). For each time 

segment, the time-domain signal  x n is transformed into its frequency-domain representation using the 

Discrete Fourier Transform (DFT), defined as follows: 
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where N denotes the FFT window length. The transformation yields an amplitude spectrum  X k , which 

represents the contribution of each frequency component in the EEG signal. Next, the average spectral power 

(band power) is computed across five primary frequency bands based on the SEED dataset configuration with 

cutoff frequencies at [3, 4, 8, 14, 32] Hz. For each frequency band  1 2,f f , the average spectral power (Power 

Spectral Density, PSD) is calculated using the following equation: 
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where M  represents the number of frequency bins within the defined range. This process produces five 

spectral power values for each channel, resulting in a total of 62 × 5 = 310 features per EEG segment. This 

approach preserves the spectral information of each EEG channel in both spatial and temporal dimensions 

while significantly reducing data dimensionality compared to raw signals. The resulting features in the 

frequency domain are then provided as inputs to the Long Short-Term Memory (LSTM) classifier, as detailed 

in Subsection 2.4. 

The FFT band power was selected as the primary feature because EEG rhythms are well localized within 

canonical frequency ranges with well-established physiological relevance. Computing the power within δ, θ, 

α, β, and γ bands provides a compact summary of neural oscillations associated with arousal, attention, and 

affective processing, while eliminating the need for high-capacity or image-based models. A band-pass filter 

between 1–50 Hz was applied to remove slow drifts and muscle artifact. Limiting the analysis to frequencies 

below 50 Hz minimizes contamination from high-frequency artifacts yet retains lower γ activity, which has 
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been reported as informative for emotion recognition. This configuration achieves a balance between 

physiological interpretability, robustness to noise, and computational efficiency [26], [31]–[33]. 

 

3.4. Long Short-Term Memory (LSTM) Classifier 

The classification model employed in this study is a five-layer stacked Long Short-Term Memory (LSTM) 

network implemented using Keras/TensorFlow. LSTM-based models, including stacked, have demonstrated 

strong performance in emotion recognition tasks using FFT or similar frequency-domain features [35], [36]. 

The input consists of FFT band power features derived from 62 EEG channels across five frequency bands, 

formatted into a three-dimensional structure [batch, timestep, feature] to ensure compatibility with the LSTM 

architecture. Each LSTM layer is followed by batch normalization to stabilize activation distributions and 

dropout with ratios ranging from 0.2 to 0.3 to reduce the risk of overfitting. As illustrated in Figure 1, the 

architecture begins with an LSTM layer containing 512 units, followed sequentially by layers with 256, 128, 

64, and 32 units, respectively. The final output is projected onto a Dense layer with three units—corresponding 

to the number of emotion classes—using a softmax activation function. This configuration enables the model 

to capture nonlinear temporal dynamics in EEG feature representations while preserving relevant sequential 

information through the gating mechanisms inherent to LSTM networks. The detailed configuration and 

training parameters of the classifier are summarized in Table 2, which lists the key hyperparameter 

specifications, including layer structure, normalization strategy, regularization methods, and training settings 

such as loss function, optimizer, learning rate, batch size, and validation scheme. 

 

Table 2. Hyperparameter Specifications of the LSTM classifier 

Component Specification 

Input FFT band power features (62 channels × 5 frequency bands), formatted as [batch, timestep, feature] 

LSTM Architecture 512 → 256 → 128 → 64 → 32 units (each layer followed by BN + Dropout) 

Normalization Batch normalization after each LSTM layer 

Regularization Dropout (0.2–0.3) 

Output Layer Dense (3) + Softmax activation 

Loss Function Categorical cross-entropy 

Optimizer Adam (learning rate = 1e-4) 

Epochs 50 

Batch Size 150 

Validation Stratified 10-fold cross-validation 

Evaluation Metrics Model performance assessed using accuracy, F1-measure, Cohen’s kappa coefficient, and confusion matrix analysis 
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Figure 1. LSTM Architecture 

3.5. Experimental setting 

The experimental design in this study was structured systematically to ensure that all stages of data 

processing, feature extraction, model training, and performance evaluation were conducted in a consistent 

and reproducible manner. The experimental workflow consisted of five main stages: (1) EEG signal acquisition 

and segmentation, (2) transformation and feature extraction using the FFT, (3) data normalization using 

StandardScaler, (4) classification model training based on LSTM, and (5) evaluation using stratified 10-fold 

cross-validation with quantitative performance metrics. Each stage was executed sequentially with consistent 

parameters and configurations across all iterations. 

Stage 1: EEG Signal Acquisition and Segmentation 

The EEG data used in this study were obtained from the SEED dataset, which consists of multichannel 

EEG recordings comprising 62 channels with a sampling frequency of 200 Hz. Each EEG recording was 

collected from 15 participants across three separate sessions, with each session containing 15 film clips of 

approximately four minutes in duration. All EEG signals were stored in raw EEG (.mat) format, represented 

as amplitude matrices over time. 

Before applying the transformation, each EEG channel was segmented into overlapping time windows. 

The window length was set to 256, which corresponds to approximately 3.66 seconds after the signals were 

resampled to 70 Hz. All segmentation and feature extraction steps were performed on the resampled data. 

The step size is 16 samples, resulting in an overlap of 93.75% between consecutive windows. The overlapping 

segmentation was applied to retain temporal continuity within the EEG signal and to ensure that the model 

received sufficient temporal dynamics for each observation. Each window was treated as an independent 

observation unit during feature extraction. To ensure consistency across the entire pipeline, all SEED 

recordings were uniformly resampled from 200 Hz to 70 Hz before segmentation. 

http://dx.doi.org/10.30983/knowbase.v5i2.10145


Knowbase : International Journal of Knowledge In Database 

Vol. 05 No. 02 July - December 2025 pp, 145-161 

 Dwi Wahyu Prabowo, Human Emotion Classification …   10.30983/knowbase.v5i2.10145 152 

The segmentation structure is illustrated in Figure 2, showing that each EEG channel was divided into 

multiple overlapping short-duration segments. Each segment was subsequently transformed into the 

frequency domain, and the resulting FFT representations were aggregated to form a comprehensive feature 

set for the classification stage. 

Stage 2: FFT Transformation and Band Power Feature Extraction 

After segmentation, each EEG segment  x n was transformed from the time domain to the frequency 

domain using the FFT. FFT decomposes the EEG signal into its constituent frequency components. The 

transformation was applied to each channel and time window. The resulting output was a complex-valued 

frequency spectrum vector  X k , representing the amplitude and phase contributions at each frequency index

( )k . From the FFT output, only the magnitude spectrum  ( )X k was utilized, as it reflects the relative strength 

of each frequency component without considering phase information. 

To obtain features representing the spectral characteristics of brain activity, the magnitude values  ( )X k

were grouped into five canonical EEG frequency bands: δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–31 Hz), and 

γ (32–35 Hz). For each frequency band  1 2,f f , the mean magnitude value was computed using the following 

equation: 

   
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1 2
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,

1
f

f f
k f

P X k
M =

=   

 

(3) 

where ( )M is the number of frequency bins within the specified band. This computation produced five band 

power values per EEG channel. Given 62 channels, each EEG segment yielded a total of 62 × 5 = 310 features. 

All channel-wise features were then concatenated into a single feature vector of 310 dimensions, representing 

the spectral energy distribution of the EEG signal within that segment. 

The complete process is depicted in Figure 2, which consists of four main blocks: (1) raw EEG signal input, 

(2) overlapping segmentation with 256-sample windows and 16-sample step size, (3) FFT transformation and 

mean magnitude calculation within each frequency band, and (4) feature assembly by concatenating all 

channels. The diagram clearly illustrates how the EEG signal was converted into a numerical representation 

suitable for subsequent classification. 

Stage 3: Feature Normalization 

After feature extraction, all feature vectors were normalized. Normalization was applied separately within 

each training fold to prevent data leakage. Then the resulting mean and standard deviation parameters were 

subsequently used to transform the corresponding test data within the same fold. This ensured that all 

extracted features followed a standardized distribution with zero mean and unit variance. This normalization 

step is important because FFT-derived features across frequency bands show different numerical ranges. 

Without normalization, frequency bands with higher magnitudes (such as β and γ) might dominate the 

learning process and bias the model toward those bands. Normalization also facilitates faster and more stable 

convergence during neural network training, as gradients remain consistent across feature dimensions. 

http://dx.doi.org/10.30983/knowbase.v5i2.10145


 Knowbase : International Journal of Knowledge In Database 

Vol. 05 No. 02 July - December 2025 pp, 145-161 

 

   10.30983/knowbase.v5i2.10145  Dwi Wahyu Prabowo, Human Emotion Classification … 153 

 

Figure 2. Illustration of EEG signal segmentation and FFT-based feature extraction. Each channel is divided into overlapping 

windows, transformed into the frequency domain using FFT, averaged within five canonical frequency bands (δ, θ, α, β, γ), and 

concatenated into a 310-dimensional feature vector per segment. All EEG recordings were resampled to 70 Hz prior to segmentation, 

ensuring consistent temporal resolution across all overlapping windows. 

Stage 4: LSTM Model Training 

The next stage involved training the classification model using a five-layer stacked LSTM network. The 

detailed architecture is described in Subsection 3.4, but in summary, it consisted of sequential LSTM layers 

with 512, 256, 128, 64, and 32 units, respectively. Each LSTM layer was followed by batch normalization and 

dropout (ranging from 0.2 to 0.3) to stabilize training and reduce overfitting. The final output layer was a Dense 

layer with three neurons and a softmax activation function, corresponding to the three emotion categories: 

positive, neutral, and negative. The model was compiled using the categorical cross-entropy loss function and 

optimized with the Adam optimizer at a learning rate of 1×10⁻⁴. Training was performed for 50 epochs with a 

batch size of 150, without early stopping, to maintain consistency across all folds. All experiments were executed 

in a GPU-accelerated (DGX-1 V100) TensorFlow environment to ensure uniform training speed and 

reproducibility. Identical initialization and parameter configurations were applied across iterations to 

eliminate random variability in training outcomes. 
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Stage 5: Model Evaluation and Validation 

Model performance was evaluated using stratified 10-fold cross-validation. The dataset was divided into 

ten subsets with balanced distributions across the three emotion classes (positive, neutral, and negative). In 

each iteration, nine subsets were used for training and one for testing. This process was repeated ten times so 

that every subset served once as the test data. This validation approach provided more stable and 

representative performance estimates than hold-out validation and better assessed the model’s ability to 

generalize across subject-level variations. Three key metrics were used to evaluate performance: accuracy, F1-

score, and Cohen’s kappa. 

• Accuracy measured the overall proportion of correctly predicted samples. 

• F1-score evaluated the harmonic balance between precision and recall, which is particularly relevant in 

cases of minor class imbalance. 

• Cohen’s kappa served as an additional, stricter validation metric by accounting for the probability of 

random agreement between model predictions and actual labels. A kappa value greater than 0.80 

indicates almost perfect agreement, signifying a high level of consistency between the model’s 

predictions and the ground truth. 

 

Figure 3. The complete experimental pipeline of the proposed EEG-based emotion recognition framework. The process includes 

data acquisition from 62 EEG channels, segmentation and FFT-based preprocessing, band power feature extraction across δ, θ, α, β, and 

γ frequency bands, feature normalization using StandardScaler, model training and validation with a 10-fold stratified cross-validation 

scheme, and final performance evaluation using accuracy, F1-score, and Cohen’s kappa metrics. 

The complete experimental pipeline is summarized in Figure 3, which illustrates the systematic workflow 

from raw EEG acquisition, segmentation, and FFT-based feature extraction to normalization, LSTM training, 

and cross-validation-based evaluation. The diagram provides a comprehensive overview of how each 

processing block contributes to the construction of an efficient and generalizable EEG-based emotion 
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classification system. Through this structured experimental design and validation procedure, the study 

ensures that the classification results reflect stable, measurable, and unbiased model performance, free from 

data imbalance or information leakage across folds. In this context, the SEED dataset does not require any 

balancing procedure because its emotion labels are uniformly distributed. Each subject provides 15 samples 

for each class (positive, neutral, and negative), which results in an overall balanced dataset as reported by 

Zheng & Lu [24] and Li et al. [37]. The approach also guarantees that the results can be replicated by future 

studies using the same dataset and configuration. 

4. Results and Discussion  

4.1. Experimental Results per Fold 

The experimental findings summarized in Table 3 report the model’s performance in classifying emotions 

using FFT band power features evaluated on the SEED dataset through a stratified 10-fold validation scheme. 

The obtained accuracy scores across folds vary only slightly, ranging from 0.8978 to 0.9001 with an average of 

0.8987. This indicates that the model performs consistently across all data partitions without any significant 

performance degradation in specific folds. Such consistency confirms that the implemented pipeline is stable 

and not strongly affected by variations in data subsets. 

In addition to accuracy, the F1-score values ranging from 0.9000 to 0.9023 demonstrate a good balance 

between precision and recall. With an average of 0.9010, the results indicate that the model is capable of 

recognizing all emotion classes (positive, neutral, and negative) in a balanced manner rather than focusing 

only on the dominant class. The stability of the F1-score further supports the claim that FFT band power 

features provide sufficient discriminative information to distinguish emotional states effectively, despite being 

a relatively simple representation compared to image-based EEG features. 

Cohen’s kappa metric also provides an important perspective, yielding an average value of 0.8481. 

According to Landis and Koch’s interpretation, this falls into the “almost perfect agreement” category, 

meaning the model’s predictions show a very high level of agreement with the true labels, even after 

accounting for random chance. This demonstrates that the model’s performance is not only characterized by 

high accuracy but also statistically valid in reflecting its classification capability. In other words, the model 

truly differentiates between emotion classes rather than relying on data distribution biases. 

Meanwhile, the loss values remain stable, with an average of 0.1763, indicating that the model consistently 

minimizes prediction errors during both training and testing. The very small variation in loss across folds 

(0.1745–0.1779) further confirms that the model exhibits strong generalization ability toward unseen data. The 

combination of accuracy, F1-score, kappa, and loss results demonstrates that FFT band power serves as a 

robust baseline for EEG-based emotion classification and provides a solid foundation for future research 

involving more complex approaches, such as multi-representation CNNs or GAN-based data augmentation. 

Table 3. Emotion classification results on the SEED dataset using FFT band power 

Fold Accuracy F1 score Kappa Loss 

1 0.8997 0.9019 0.8495 0.1753 

2 0.8990 0.9012 0.8485 0.1767 

3 0.8985 0.9007 0.8477 0.1779 

4 0.8980 0.9001 0.8470 0.1755 

5 0.8978 0.9000 0.8467 0.1768 

6 0.9001 0.9023 0.8501 0.1745 

7 0.8974 0.8996 0.8461 0.1765 

8 0.8994 0.9016 0.8491 0.1765 

9 0.8991 0.9013 0.8486 0.1765 

10 0.8987 0.9009 0.8480 0.1765 
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4.2. Overall Performance and Discussion 

The experimental results indicate that the average accuracy nearly reached 90%, specifically 89.87%. This 

is a relatively high value for a baseline approach that solely utilizes FFT band power as the main feature. Given 

that FFT is a simple method focusing on energy representation across specific frequency bands, this finding 

demonstrates that frequency information in EEG signals has a strong correlation with emotional states. 

Although image-based approaches such as recurrence plot (RP) and spectrogram (SP) are often reported to 

yield superior performance, the present results emphasize that the classical FFT-based approach remains 

relevant and competitive for emotion classification [25], [38], [39]. 

Beyond accuracy, the stable F1-score around 0.90 provides a more comprehensive perspective on the 

model’s performance. The F1-score, which harmonizes precision and recall, shows that the model is capable 

of identifying the majority class and maintains balanced recognition across all emotion categories (positive, 

neutral, and negative). This is essential because EEG experiments often involve class imbalance. When relying 

solely on accuracy, models may exhibit bias toward dominant classes. However, the consistently high F1-score 

confirms that the FFT band power pipeline successfully maintains balanced performance across emotion 

classes. 

Cohen’s kappa further reinforces the validity of these findings. With an average of 0.848, the score falls 

within the “almost perfect agreement” category according to the Landis and Koch interpretation [40]. This 

indicates that the model’s predictions exhibit a very high level of agreement with the ground truth labels, even 

after adjusting for random chance. The kappa metric is particularly important in EEG-based emotion 

classification, which is susceptible to inter-subject variability and signal noise. With Kappa > 0.80, it can be 

concluded that the model’s performance is not random but genuinely reflects its capability to recognize 

emotional patterns in EEG signals. 

Result stability is another key point in this analysis. The variation across folds is extremely small, with a 

standard deviation in accuracy of less than 0.001. This demonstrates that the experimental pipeline is robust 

against variations in training and testing data. In other words, the model is not overly sensitive to changes in 

data subsets, indicating good generalization ability. Such stability is essential for real-world applications of 

EEG-based emotion recognition systems, where incoming data may differ from training data. 

Overall, the consistently strong results across all evaluation metrics (classification accuracy, F1-measure, 

and Cohen’s kappa coefficient) demonstrate that the FFT band power method serves as a strong baseline for 

EEG-based emotion recognition research. Although the results do not yet surpass those of deep learning 

approaches involving multi-representations or data augmentation, the FFT-based pipeline provides 

competitive performance with higher interpretability and lower computational complexity. This foundation 

can support future research aimed at developing more advanced models, such as combining FFT with RP/SP 

or employing GANs, to further improve accuracy without compromising the demonstrated stability and 

interpretability of the current approach. 

4.3. Analysis of Confusion Matrix 

The results presented and visualized in Figure 4 indicate that the emotion classification model based on 

FFT band power can accurately recognize all three emotion classes with relatively high performance. Across 

the 10-fold cross-validation, the average number of correct predictions reached 64,269 for the positive class, 

70,368 for the neutral class, and 65,378 for the negative class. These results show that the distribution of correct 

predictions is well balanced across all classes, suggesting that no emotion category was neglected. In other 

words, the model does not show bias toward any specific emotion class. This finding demonstrates that band 

power distributions contribute substantially to distinguishing emotional states. 

However, Figure 4 reveals a consistent confusion pattern, primarily involving the neutral class. 

Specifically, 7,614 positive samples and 7,574 negative samples were misclassified as neutral. The darker 

shades in the [Positive → Neutral] and [Negative → Neutral] cells highlight the model’s tendency to safely 
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assign uncertain predictions to the neutral category. This phenomenon is reasonable, as the neutral emotional 

state is physiologically positioned near the midpoint of the positive–negative spectrum, causing its EEG 

patterns to often resemble both other classes. 

Conversely, misclassifications from the neutral class to other classes were relatively small, with 1,351 

instances to the positive class and 2,464 to the negative class. This indicates that the model tends to be more 

conservative when classifying neutral signals. Such behavior reduces the risk of extreme prediction errors, 

such as incorrectly labeling negative emotions as positive. However, the trade-off is a slight decrease in 

sensitivity when detecting positive and negative emotions. This pattern is consistent with multiple studies 

who reported that the neutral emotion class frequently serves as a buffer or intermediary zone between 

positive and negative emotions in EEG-based emotion classification systems [41], [42]. 

 

Figure 4. Heatmap Visualization of the Average Confusion Matrix (10-Fold CV) 

Overall, Figure 4 demonstrates that the FFT band power pipeline produces a stable model with a high 

level of agreement with the ground truth labels. This is supported by a Cohen’s kappa value of 0.848, which 

falls within the “almost perfect agreement” category according to Landis and Koch (1977) [40]. Therefore, 

although some confusion remains within the neutral class, the model’s performance remains consistent and 

statistically valid. This confusion matrix analysis further reinforces the claim that FFT band power serves as a 

strong baseline for EEG-based emotion recognition, providing a foundation for future improvements through 

multi-representation approaches [43] or GAN-based data augmentation [16], [18], [19], [44] to enhance inter-

class separability. 

4.4. Comparison with Related Works 

To contextualize the performance of the proposed FFT-based LSTM model, a comparison with several 

representative studies on SEED is presented in Table 4. These studies employ various data augmentation 

strategies, primarily through noise injection or the use of generative adversarial networks (GANs), which are 

designed to increase data diversity and improve classification performance in limited-data scenarios such as 

EEG emotion recognition. 

Wang et al. [45]enhanced the SEED dataset by adding Gaussian noise and trained a ResNet18 classifier, 

achieving an accuracy of 75.00 percent. Despite the additional artificially generated samples, the performance 

remains relatively modest, suggesting that noise-based augmentation may not effectively capture the complex 

temporal–spectral characteristics of EEG emotional dynamics. Luo and Lu [46] introduced a conditional 
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Wasserstein GAN (cWGAN) to generate synthetic samples and used an SVM classifier, yielding an accuracy 

of 86.96 percent. Luo et al. [47] further extended this approach by employing a conditional Boundary 

Equilibrium GAN (cBEGAN), producing a slightly improved accuracy of 87.56 percent. Zhang et al. [48] 

developed a multi-generator cWGAN (MG-cWGAN) framework to better model EEG variability, yet the 

reported accuracy was 84.00 percent. 

Studies Methods Accuracy (%) 

Wang et al. [45] Gaussian noise + ResNet18 75.00 

Luo & Lu [46] cWGAN + SVM 86.96 

Luo et al. [47] cBEGAN + SVM 87.56 

Zhang et al. [48] MG-cWGAN + SVM 84.00 

This study No augmentation + (FFT & LSTM) 89.87 

Compared to these augmentation-based methods, the proposed approach demonstrates stronger 

performance even without any synthetic sample generation. As shown in Table 4, this study achieved an 

accuracy of 89.87 percent using only the original SEED data and a straightforward feature extraction pipeline 

based on FFT band power. This performance advantage highlights the discriminative power of spectral 

features when combined with a deep sequential classifier such as LSTM. Furthermore, the stability 

demonstrated across the folds in this study indicates that high-quality spectral representations can offer a 

reliable foundation without the need for computationally intensive augmentation strategies. 

It is also important to note that Section 4.3 identified remaining confusion between positive and negative 

classes converging toward the neutral class, suggesting potential benefits from controlled data expansion. 

Therefore, although the present study demonstrates competitive performance without augmentation, the 

findings are well aligned with future research directions involving GAN-based augmentation, particularly 

using cWGAN, cBEGAN, or MG-cWGAN frameworks. Integrating these generative models with FFT-based 

representations may further enhance class separability and improve robustness in emotion classification 

systems. 

5. Conclusion  

This study successfully demonstrates that FFT band power can serve as a strong baseline for EEG-based 

emotion classification. With an average accuracy of 89.87%, an F1-score of 90.10%, and a Cohen’s kappa of 

0.848, the proposed method exhibits stable performance and high statistical validity. The consistent stability 

across folds indicates that the experimental pipeline is not only reliable for specific data subsets but also 

possesses good generalization capability. These findings confirm that although FFT band power is a relatively 

simple method, it remains relevant and effective for extracting essential information from EEG signals, 

particularly in the context of human emotion analysis. For future research, this baseline can be extended by 

integrating more advanced approaches to enhance model accuracy and generalization. One potential direction 

is the use of multi-representation frameworks that combine recurrence plot (RP) and spectrogram (SP) features 

to capture both nonlinear characteristics and time–frequency distributions of EEG signals. Another alternative 

is the application of generative adversarial network (GAN)-based data augmentation to overcome the 

limitations of sample size and increase training data diversity. By combining the strengths of classical methods 

such as FFT with modern deep learning approaches, future studies are expected to develop EEG-based 

emotion recognition systems that are more accurate, robust, and suitable for real-world applications. 

Furthermore, comparative results reported in the literature show that a straightforward FFT and LSTM 

pipeline can surpass several augmentation-based methods, underscoring its value as a strong and 

computationally efficient baseline for future EEG-based emotion recognition research. 
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