Application of the Naïve Bayes Algorithm in Classifying the Reading Interests of Regional Library Visitors

Authors

DOI:

https://doi.org/10.30983/knowbase.v4i1.8680

Keywords:

Reading Interest, Regional library, Classification, Data Mining, Naïve Bayes

Abstract

Reading interest is a key indicator in assessing the success of library services. However, manually understanding visitors' preferences poses a challenge for library managers. This study aims to classify the reading interests of regional library visitors by employing the Naïve Bayes algorithm, a widely-used classification method in data mining. The research data includes visit records and book borrowing data from a regional library. Through a quantitative approach, this study analyzes reading interest patterns and evaluates the performance of the Naïve Bayes algorithm in classifying these interests. The analysis results show that the algorithm achieves an accuracy of 65%, with a precision of 62%, recall of 63%, and F1-score of 63%. These findings are expected to assist libraries in formulating better-targeted collection management and service policies, contributing to the overall improvement of reading interest in the community. This study contributes to the field by providing a practical, data-driven solution for libraries to enhance service quality through a better understanding of visitor preferences. Furthermore, it demonstrates the applicability of the Naïve Bayes algorithm in a non-commercial context, encouraging future research on data-driven approaches in library management to support literacy and educational development

Author Biography

Wandi Syahindra, Insitut Agama Islam Negeri Curup

Ilmu Komputer

References

W. Wardiana, A. Fadli, and D. Wahyudiati, “Hubungan Pemanfaatan Perpustakaaan Sekolah dan Minat Baca terhadap Hasil Belajar Siswa Kelas XII IPS di MA AL-Ijtihad Danger Lombok Timur,” JS, vol. 10, no. 2, Art. no. 2, Dec. 2021, doi: 10.20414/schemata.v10i2.4090.

Z. Azman, “Dakwah Bagi Generasi Milenial Melalui Media Sosial,” Jurnal Khabar: Komunikasi dan Penyiaran Islam, vol. 3, no. 2, Art. no. 2, 2021, doi: 10.37092/khabar.v3i2.350.

A. Karimah, N. Alfatikarahma, and A. Fauziah, “Studi Literatur: Peran Penting Literasi Membaca dalam Upaya Meningkatkan Karakter Positif Siswa Sekolah Dasar,” Indo-MathEdu Intellectuals Journal, vol. 5, no. 1, pp. 623–634, Jan. 2024, doi: 10.54373/imeij.v5i1.670.

Y. Wijaya, “Implementasi data mining dengan metode support vector machine pada aplikasi fundraising UKM LDK Syahid,” bachelorThesis, Fakultas Sains Teknologi UIN Syarif Hidayatullah Jakarta, 2024. Accessed: Sep. 25, 2024. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/80019

A. Habibillah, T. Terttiaavini, and A. Heryati, “Pengembangan Perpustakaan Digital Untuk Meningkatkan Minat Membaca Siswa SD Negeri 8 Rantau Bayur Palembang,” Klik - Jurnal Ilmu Komputer, vol. 3, no. 1, Art. no. 1, Mar. 2022, doi: 10.56869/klik.v3i1.340.

- Elmelia Syari, “Pengelolaan Perpustakaan Dalam Meningkatkan Minat Baca Siswa Di Sekolah Menengah Atas Negeri 1 Kampar,” skripsi, UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU, 2024. Accessed: Sep. 25, 2024. [Online]. Available: http://repository.uin-suska.ac.id/82948/

A. Ahmad Fauzi et al., Pemanfaatan Teknologi Informasi di Berbagai Sektor Pada Masa Society 5.0. PT. Sonpedia Publishing Indonesia, 2023.

F.-J. Yang, “An Implementation of Naive Bayes Classifier,” in 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Dec. 2018, pp. 301–306. doi: 10.1109/CSCI46756.2018.00065.

S. Rana, R. Kanji, and S. Jain, “Comparison of SVM and Naïve Bayes for Sentiment Classification using BERT data,” in 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), Nov. 2022, pp. 1–5. doi: 10.1109/IMPACT55510.2022.10029067.

K. Chong and N. Shah, “Comparison of Naive Bayes and SVM Classification in Grid-Search Hyperparameter Tuned and Non-Hyperparameter Tuned Healthcare Stock Market Sentiment Analysis,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 13, no. 12, Art. no. 12, 33/30 2022, doi: 10.14569/IJACSA.2022.0131213.

R. Salam and H. Usman, “Pengaruh Minat Baca dan Ketersediaan Sumber Belajar Terhadap Prestasi Belajar Siswa Kelas IV SDN Centre Mangalli Kecamatan Pallangga Kabupaten Gowa,” 2021.

R. K. Sari et al., Metodologi Penelitian Pendidikan. Sada Kurnia Pustaka, 2023.

H. Maulana, T. Repelita, I. Purnamasari, and S. Azzahwa, “Pengaruh Minat Baca dan Ketersedian Sumber Belajar Terhadap Prestasi Belajar”.

M. Murlena and D. Apriana, “Penerapan Data Mining Untuk Memprediksi Ketersediaan Stok Produk HNI HPAI Menggunakan Algoritma C4.5,” Arcitech: Journal of Computer Science and Artificial Intelligence, vol. 2, no. 1, Art. no. 1, Jun. 2022, doi: 10.29240/arcitech.v2i1.5271.

M. Anggraeni, “Pengembangan Dan Penerapan Repositori Institusi Di Perguruan Tinggi Dilihat Dari Dua Fungsi Manajemen: Studi Kasus di UI dan IPB,” p. 14, 2014.

M. Murlena and W. Syahindra, “DATA MINING PENGOLAHAN PENEMPATAN LIBRARY BOOKS MENGGUNAKAN METODE ASSOCIATION RULE DENGAN ALGORITMA APRIORI,” Jurnal INSTEK (Informatika Sains dan Teknologi), vol. 5, no. 2, Art. no. 2, Sep. 2020, doi: 10.24252/instek.v5i2.16203.

M. Imron, “Penerapan Data Mining Algoritma Naives Bayes dan Part Untuk Mengetahui Minat Baca Mahasiswa di Perpustakaan STMIK AMIKOM Purwokerto,” vol. 10, no. 2, 2017.

D. Lianda and N. S. Atmaja, “Prediksi Data Buku Favorit Menggunakan Metode Naïve Bayes (Studi Kasus: Universitas Dehasen Bengkulu),” pseudocode, vol. 8, no. 1, pp. 27–37, Mar. 2021, doi: 10.33369/pseudocode.8.1.27-37.

E. Rahma, Akses dan Layanan Perpustakaan: Teori dan Aplikasi. Kencana, 2018.

Downloads

Submitted

2024-06-25

Accepted

2024-09-01

Published

2024-09-25

Issue

Section

Articles